Example: Sketch the graph of:

$$f(x) = \frac{1}{x^2 + 1}$$

-

Example: Sketch the graph of:

We need to find:

Example: Sketch the graph of:

We need to find: The y-int

Example: Sketch the graph of:

We need to find: The y-int

The *x*-int

Example: Sketch the graph of:

We need to find: The y-int

The x-int

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int

The x-int

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The *y*-int: x = 0

The x-int

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0, 1)$
The x-int

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0, 1)$
The x-int

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0, 1)$
The x-int: $y = f(x) = 0$

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int:
$$x = 0$$

 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0, 1)$
The x-int: $y = f(x) = 0$
We need to solve $0 = \frac{1}{x^2+1}$

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1

Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes

Example: Sketch the graph of:

We need to find:

The *y*-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The *x*-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no *x*-int Vertical asymptotes: $x^2 + 1 = 0$

Example: Sketch the graph of:

We need to find:

The *y*-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The *x*-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no *x*-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$) The End Behavior

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$ • We saw that $\frac{1}{x^2+1} \approx 0$ since $deg(1) < deg(x^2+1)$

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$ • We saw that $\frac{1}{x^2+1} \approx 0$ since $deg(1) < deg(x^2+1)$

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$ • We saw that $\frac{1}{x^2+1} \approx 0$ since $deg(1) < deg(x^2+1)$ Since there are no more x-int we know f(x) cannot change sign

Example: Sketch the graph of:

We need to find:

The y-int: x = 0 $f(0) = \frac{1}{0^2+1} = 1 \rightarrow (0,1)$ The x-int: y = f(x) = 0We need to solve $0 = \frac{1}{x^2+1}$ By solving 0 = 1This means no x-int Vertical asymptotes: $x^2 + 1 = 0$

This also has no real solutions (just $\pm i$): No vertical asymptotes The End Behavior: $x \to \pm \infty$ • We saw that $\frac{1}{x^2+1} \approx 0$ since $deg(1) < deg(x^2+1)$ Since there are no more x-int we know f(x) cannot change sign