To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$

• Recall: For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$

ullet Recall: For large $x~(x
ightarrow\pm\infty)$ polynomials behave like their lead term

P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term)

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term)

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$f(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$F(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$F(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

Let's look at this in 3 cases: 1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m}$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$F(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

Let's look at this in 3 cases:

1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}}$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$F(x) = rac{P(x)}{D(x)} pprox rac{a_n x^n}{b_m x^m}$$

Let's look at this in 3 cases:

1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$F(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

1. If
$$m > n$$
 then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m = n$ then $f(x) \approx \frac{a_n x^n}{b_m x^n}$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$f(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

Let's look at this in 3 cases:

1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge 2. If m = n then $f(x) \approx \frac{a_n x^n}{b_m x^n} \approx \frac{a_n}{b_m}$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$f(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

- 1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge 2. If m = n then $f(x) \approx \frac{a_n x^n}{b_m x^n} \approx \frac{a_n}{b_m}$
- 3. If m < n then polynomial division gives: $\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$f(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

- 1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge 2. If m = n then $f(x) \approx \frac{a_n x^n}{b_m x^n} \approx \frac{a_n}{b_m}$
- 3. If m < n then polynomial division gives: $\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$ For $x \to \pm \infty$: $\frac{R(x)}{D(x)} \approx 0$ from case 1

To complete our graph of a Rational Function:

$$f(x) = \frac{P(x)}{D(x)}$$

We need to understand the End Behavior

The End Behavior of a graph is how it behaves for $x \to \pm \infty$ **Recall:** For large $x \ (x \to \pm \infty)$ polynomials behave like their lead term P(x) is a polynomial, so for large x: $P(x) \approx a_n x^n$ (it's lead term) D(x) is a polynomial, so for large x: $D(x) \approx b_m x^m$ (it's lead term) This means that for large x:

$$f(x) = \frac{P(x)}{D(x)} \approx \frac{a_n x^n}{b_m x^m}$$

Let's look at this in 3 cases:

1. If m > n then $f(x) \approx \frac{a_n x^n}{b_m x^m} \approx \frac{a_n}{b_m x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge 2. If m = n then $f(x) \approx \frac{a_n x^n}{b_m x^n} \approx \frac{a_n}{b_m}$

3. If m < n then polynomial division gives: $\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$

For
$$x \to \pm \infty$$
: $\frac{R(x)}{D(x)} \approx 0$ from case 1
For $x \to \pm \infty$: $\frac{P(x)}{D(x)} \approx Q(x)$