Graphing Rational Functions - End Behavior General

Graphing Rational Functions - End Behavior General

 To complete our graph of a Rational Function:$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior

Graphing Rational Functions - End Behavior General

 To complete our graph of a Rational Function:$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
\rightarrow Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term)

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term)
$D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term)

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
\rightarrow Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term)
$D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term)
This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
\rightarrow Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term)
$D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term)
This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}}$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term)
$D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m=n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{n}}$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m=n$ then $f(x) \approx \frac{a_{n} x^{\mu}}{b_{m} x^{\mu}} \approx \frac{a_{n}}{b_{m}}$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m=n$ then $f(x) \approx \frac{a_{n} \chi^{\mu}}{b_{m} x^{\mu}} \approx \frac{a_{n}}{b_{m}}$
3. If $m<n$ then polynomial division gives: $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m=n$ then $f(x) \approx \frac{a_{n} \chi^{\mu}}{b_{m} x^{\mu}} \approx \frac{a_{n}}{b_{m}}$
3. If $m<n$ then polynomial division gives: $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$

For $x \rightarrow \pm \infty: \frac{R(x)}{D(x)} \approx 0$ from case 1

Graphing Rational Functions - End Behavior General

To complete our graph of a Rational Function:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We need to understand the End Behavior
The End Behavior of a graph is how it behaves for $x \rightarrow \pm \infty$
\rightarrow Recall: For large $x(x \rightarrow \pm \infty)$ polynomials behave like their lead term $P(x)$ is a polynomial, so for large $x: P(x) \approx a_{n} x^{n}$ (it's lead term) $D(x)$ is a polynomial, so for large $x: D(x) \approx b_{m} x^{m}$ (it's lead term) This means that for large x :

$$
f(x)=\frac{P(x)}{D(x)} \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}
$$

Let's look at this in 3 cases:

1. If $m>n$ then $f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}} \approx \frac{a_{n}}{b_{m} x^{(m-n)}} \approx 0$ because $x^{(m-n)}$ get huge
2. If $m=n$ then $f(x) \approx \frac{a_{n} \chi^{\mu}}{b_{m} x^{\mu}} \approx \frac{a_{n}}{b_{m}}$
3. If $m<n$ then polynomial division gives: $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$

For $x \rightarrow \pm \infty: \frac{R(x)}{D(x)} \approx 0$ from case 1
For $x \rightarrow \pm \infty: \frac{P(x)}{D(x)} \approx Q(x)$

