Graphing Rational Functions - Vertical Asymptotes

Graphing Rational Functions - Vertical Asymptotes

we defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Graphing Rational Functions - Vertical Asymptotes

© we cefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$

Graphing Rational Functions - Vertical Asymptotes

cwe sefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$ We saw with the function $f(x)=\frac{1}{x}$ that $f(x)$ is undefined at $x=0$

Graphing Rational Functions - Vertical Asymptotes

we cenced a Rational Function as:

$$
f(x)=\frac{P}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$

- We saw with the function $f(x)=\frac{1}{x}$ that $f(x)$ is undefined at $x=0$ Furthermore, we saw that as x got closer and closer to $0, f(x)$ is the reciprocal of a smaller and smaller number, resulting in a larger and larger number.

Graphing Rational Functions - Vertical Asymptotes

we define a Rational Function as:

$$
f(x)=\frac{P}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
We saw with the function $f(x)=\frac{1}{x}$ that $f(x)$ is undefined at $x=0$ Furthermore, we saw that as x got closer and closer to $0, f(x)$ is the reciprocal of a smaller and smaller number, resulting in a larger and larger number.
In General: If $P(a) \neq 0$ and $D(a)=0$ then

$$
f(x)=\frac{P(x)}{D(x)}
$$

is very large for x near a

Graphing Rational Functions - Vertical Asymptotes

we define a Rational Function as:

$$
f(x)=\frac{P}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
We saw with the function $f(x)=\frac{1}{x}$ that $f(x)$ is undefined at $x=0$ Furthermore, we saw that as x got closer and closer to $0, f(x)$ is the reciprocal of a smaller and smaller number, resulting in a larger and larger number.
In General: If $P(a) \neq 0$ and $D(a)=0$ then

$$
f(x)=\frac{P(x)}{D(x)}
$$

is very large for x near a
We say that $x=a$ is a vertical asymptote

Graphing Rational Functions - Vertical Asymptotes

- we cefined a Rational Function as:

$$
f(x)=\frac{P}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
We saw with the function $f(x)=\frac{1}{x}$ that $f(x)$ is undefined at $x=0$ Furthermore, we saw that as x got closer and closer to $0, f(x)$ is the reciprocal of a smaller and smaller number, resulting in a larger and larger number.
In General: If $P(a) \neq 0$ and $D(a)=0$ then

$$
f(x)=\frac{P(x)}{D(x)}
$$

is very large for x near a
We say that $x=a$ is a vertical asymptote
Graphically, a vertical asymptote is a vertical line where $f(x) \rightarrow \pm \infty$

