Graphing Rational Functions - $f(x)=\frac{1}{x}$

Graphing Rational Functions $-f(x)=\frac{1}{x}$

- We defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

Graphing Rational Functions $-f(x)=\frac{1}{x}$

- wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- We defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

We defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefince a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

Wedefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we defined a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- we defines) a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger
If $x \rightarrow \infty$ then $f(x)=\frac{1}{x}$ gets smaller

Graphing Rational Functions - $f(x)=\frac{1}{x}$

- we defines) a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$ If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger
If $x \rightarrow \infty$ then $f(x)=\frac{1}{x}$ gets smaller

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefine a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$ If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger
If $x \rightarrow \infty$ then $f(x)=\frac{1}{x}$ gets smaller

For $x<0$ we get a similar picture, but with $f(x)=\frac{1}{x}<0$ as well

Graphing Rational Functions - $f(x)=\frac{1}{x}$

we cefine a Rational Function as:

$$
f(x)=\frac{P(x)}{D(x)}
$$

We saw that these functions are undefined for x so $D(x)=0$
Now we will graph our easiest Rational Function:

$$
f(x)=\frac{1}{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$ If $x=1 \rightarrow f(1)=\frac{1}{1}=1 \rightarrow(1,1)$
If $x=2 \rightarrow f(2)=\frac{1}{2}=\frac{1}{2} \rightarrow\left(2, \frac{1}{2}\right)$
If $x=\frac{1}{2} \rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 \rightarrow\left(\frac{1}{2}, 2\right)$
If $x=\frac{1}{4} \rightarrow f\left(\frac{1}{4}\right)=\frac{1}{\frac{1}{4}}=4 \rightarrow\left(\frac{1}{4}, 4\right)$
If $x \rightarrow 0$ then $f(x)=\frac{1}{x}$ gets bigger
If $x \rightarrow \infty$ then $f(x)=\frac{1}{x}$ gets smaller

For $x<0$ we get a similar picture, but with $f(x)=\frac{1}{x}<0$ as well

