Warning about Solving Radical Equations

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation. Let's look at a very simple example to explore further.

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.
Let's look at a very simple example to explore further.
The equation $x=1$ has one solution, which is $x=1$

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation. Let's look at a very simple example to explore further.

The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation. Let's look at a very simple example to explore further.

The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

$$
x^{2}=1^{2}
$$

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation. Let's look at a very simple example to explore further.

The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

$$
\begin{aligned}
& x^{2}=1^{2} \\
& x^{2}=1
\end{aligned}
$$

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.
Let's look at a very simple example to explore further.
The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

$$
\begin{aligned}
& x^{2}=1^{2} \\
& x^{2}=1
\end{aligned}
$$

Now that we've squared the equation, we have two solutions!

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.
Let's look at a very simple example to explore further.
The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

$$
\begin{aligned}
& x^{2}=1^{2} \\
& x^{2}=1
\end{aligned}
$$

Now that we've squared the equation, we have two solutions!

- $x=1$ (the solution to the original equation).

Warning about Solving Radical Equations

- We saw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.
Let's look at a very simple example to explore further.
The equation $x=1$ has one solution, which is $x=1$
If we square both sides of the equation, though, we get:

$$
\begin{aligned}
& x^{2}=1^{2} \\
& x^{2}=1
\end{aligned}
$$

Now that we've squared the equation, we have two solutions!

- $x=1$ (the solution to the original equation).
- $x=-1$ (a solution of the squared equation, but not the original)

Warning about Solving Radical Equations

- Wessw that we might come across a value that seems to be a solution, but is not an actual solution.
We didn't make a mistake in our calculations.
What happened?
The issue arose when we squared both sides of the equation.
Let's look at a very simple example to explore further.
The equation $x=1$ has one solution, which is $x=1$ If we square both sides of the equation, though, we get:

$$
\begin{aligned}
& x^{2}=1^{2} \\
& x^{2}=1
\end{aligned}
$$

Now that we've squared the equation, we have two solutions!

- $x=1$ (the solution to the original equation).
- $x=-1$ (a solution of the squared equation, but not the original)
Conclusion: Whenever we square both sides of an equation, we must check our solution(s) in the original equation (before it was squared) to see which values are solutions of the original equation.

