Example: Find the solution $\underline{(s)}$ to:

$$\sqrt{3x+1} \le 5$$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before

that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality. So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get:

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality. So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

On the number line, we mark that LHS = RHS at x = 8

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get:
$$x = 8$$

On the number line, we mark that LHS = RHS at x = 8

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality. So, let's first solve the equality:

$$\sqrt{3x+1} = 5$$

Solving this equality, we get:
$$x = 8$$

On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x + 1 \ge 0$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x + 1 \ge 0$ • We can find that this is defined for $x \ge \frac{-1}{3}$ by solving for x

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:
$$\sqrt{3x+1} = 5$$

Solving this equality, we get:
$$x = 8$$

On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x + 1 \ge 0$ • We can find that this is defined for $x \ge \frac{-1}{3}$ by solving for xHere, our number line is broken into 3 regions.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \leq 5$$

We result before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x + 1 \ge 0$ • We can find that this is defined for $x \ge \frac{-1}{3}$ by solving for xHere, our number line is broken into 3 regions.

For $x < \frac{-1}{3}$ our inequality is not defined.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x + 1 \ge 0$ • We can find that this is defined for $x \ge \frac{-1}{3}$ by solving for xHere, our number line is broken into 3 regions.

For $x < \frac{-1}{3}$ our inequality is not defined.

On each of the other two regions (individually) we have either:

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$\sqrt{3x+1}=5$$

Solving this equality, we get: x = 8

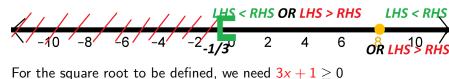
On the number line, we mark that LHS = RHS at x = 8

For the square root to be defined, we need $3x+1\geq 0$ • We can find that this is defined for $x\geq \frac{-1}{3}$ by solving for xHere, our number line is broken into 3 regions.
For $x<\frac{-1}{3}$ our inequality is not defined.

On each of the other two regions (individually) we have either:

1. $\sqrt{3x+1} > 5$ for *every* value on the region (no solutions) OR 2. $\sqrt{3x+1} < 5$ for *every* value on the region (all solutions)

Example: Find the solution(s) to:


$$\sqrt{3x+1} \le 5$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:
$$\sqrt{3x+1} = 5$$

Solving this equality, we get:
$$x = 8$$

On the number line, we mark that LHS = RHS at x = 8

We can find that this is defined for $x \ge \frac{-1}{3}$ by solving for x Here, our number line is broken into 3 regions.

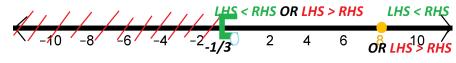
For $x < \frac{-1}{3}$ our inequality is not defined.

On each of the other two regions (individually) we have either:

- 1. $\sqrt{3x+1} > 5$ for *every* value on the region (no solutions)
- OR 2. $\sqrt{3x+1}$ < 5 for *every* value on the region (all solutions) We need to check each regions to see which are solutions.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

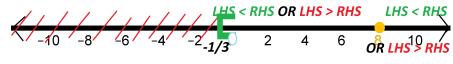

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

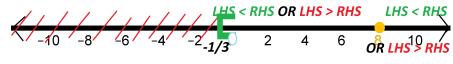


We need to check each regions to see which are solutions.

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

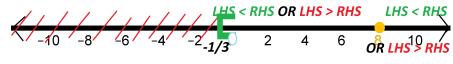

We need to check each regions to see which are solutions.

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1}$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

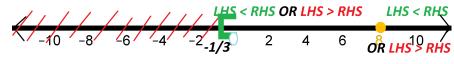

We need to check each regions to see which are solutions.

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1}$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

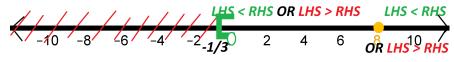

We need to check each regions to see which are solutions.

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

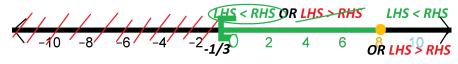

We need to check each regions to see which are solutions.

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$


We need to check each regions to see which are solutions.

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$
 $x = 0$ is a solution

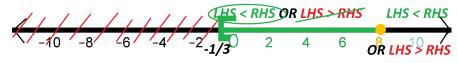
Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0


For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

x = 0 is a solution. Every $\frac{-1}{3} \le x < 8$

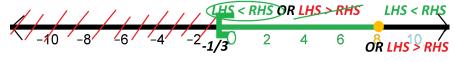
Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0


For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$


$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1}$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31}$

Example: Find the solution(s) to:

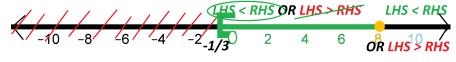
$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$


$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31} \approx 5.6$

Example: Find the solution(s) to:

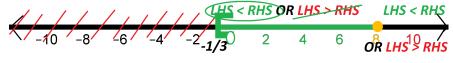
$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$


$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31} \approx 5.6 > 5$

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

From the region x > 8, we can pick the number x = 10

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31} \approx 5.6 > 5$

x = 10 is not a solution

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x=8 is the solutions to $\sqrt{3x+1}=5$ On the number line, we mark that LHS=RHS at x=8 $\sqrt{3x+1}$ is not defined for $x<\frac{1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

$$x = 0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

From the region x > 8, we can pick the number x = 10

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31} \approx 5.6 > 5$

x = 10 is not a solution. So, there's no solution for x > 8

Example: Find the solution(s) to:

$$\sqrt{3x+1} \le 5$$

We find that x = 8 is the solutions to $\sqrt{3x + 1} = 5$ On the number line, we mark that LHS = RHS at x = 8

$$\sqrt{3x+1}$$
 is not defined for $x<\frac{-1}{3}$

We need to check each regions to see which are solutions.

From the region $\frac{-1}{3} \le x < 8$, we can pick the number x = 0

For
$$x = 0$$
; $LHS = \sqrt{3 \cdot 0 + 1} = \sqrt{1} = 1 < 5$

$$x=0$$
 is a solution. Every $\frac{-1}{3} \le x < 8$

From the region x > 8, we can pick the number x = 10

For
$$x = 10$$
; $LHS = \sqrt{3 \cdot 10 + 1} = \sqrt{31} \approx 5.6 > 5$

x = 10 is not a solution. So, there's no solution for x > 8

Conclusion: The solutions to $\sqrt{3x+1} \le 5$ are: $\left[\frac{-1}{3}, 8\right]$