Square Root Function - Revisited

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.
Which means that: $x-2 \geq 0$

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.
Which means that: $x-2 \geq 0$
The Domain: $x \geq 2$

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.
Which means that: $x-2 \geq 0$
The Domain: $x \geq 2$
In general: The domain of

$$
f(x)=\sqrt{g(x)}
$$

is the x value do $g(x) \geq 0$

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.
Which means that: $x-2 \geq 0$
The Domain: $x \geq 2$
In general: The domain of

$$
f(x)=\sqrt{g(x)}
$$

is the x value do $g(x) \geq 0$
Note: $\ln f(x)=\sqrt{x}$ what we are calling $g(x)$ is x

Square Root Function - Revisited

For the function $f(x)=\sqrt{x}$
The Domain: $x \geq 0$
This is because if we take the square root of a negative number, we no longer get a real number.
So, what we're taking the square root of (x) must not be negative.
For the function $f(x)=\sqrt{x-2}+3$
What we're taking the square root of $(x-2)$ must not be negative.
Which means that: $x-2 \geq 0$
The Domain: $x \geq 2$
In general: The domain of

$$
f(x)=\sqrt{g(x)}
$$

is the x value do $g(x) \geq 0$
Note: $\ln f(x)=\sqrt{x}$ what we are calling $g(x)$ is x
And in $f(x)=\sqrt{x-2}+3$ what we are calling $g(x)$ is $x-2$

