For the function $f(x) = \sqrt{x}$ The Domain: $x \ge 0$

For the function $f(x) = \sqrt{x}$

The Domain: $\mathbf{x} \ge \mathbf{0}$

This is because if we take the square root of a negative number, we no longer get a real number.

For the function $f(x) = \sqrt{x}$

The Domain: $\mathbf{x} \ge \mathbf{0}$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x}$

The Domain: $\mathbf{x} \ge \mathbf{0}$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

For the function $f(x) = \sqrt{x}$

The Domain: $\mathbf{x} \ge \mathbf{0}$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative.

For the function $f(x) = \sqrt{x}$

The Domain: $x \ge 0$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative. Which means that: $x - 2 \ge 0$

For the function $f(x) = \sqrt{x}$

The Domain: $x \ge 0$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative. Which means that: $x - 2 \ge 0$

The Domain: $x \ge 2$

For the function $f(x) = \sqrt{x}$

The Domain: $x \ge 0$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative. Which means that: $x - 2 \ge 0$

The Domain: $x \ge 2$

In general: The domain of

$$f(x) = \sqrt{g(x)}$$

is the x value do $g(x) \ge 0$

For the function $f(x) = \sqrt{x}$

The Domain: $x \ge 0$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative. Which means that: $x - 2 \ge 0$

The Domain: $x \ge 2$

In general: The domain of

$$f(x) = \sqrt{g(x)}$$

is the x value do $g(x) \ge 0$

Note: In $f(x) = \sqrt{x}$ what we are calling g(x) is x

For the function $f(x) = \sqrt{x}$

The Domain: $x \ge 0$

This is because if we take the square root of a negative number, we no longer get a real number.

So, what we're taking the square root of (x) must not be negative.

For the function $f(x) = \sqrt{x-2} + 3$

What we're taking the square root of (x - 2) must not be negative. Which means that: $x - 2 \ge 0$

The Domain: $x \ge 2$

In general: The domain of

$$f(x) = \sqrt{g(x)}$$

is the x value do $g(x) \ge 0$ Note: In $f(x) = \sqrt{x}$ what we are calling g(x) is x And in $f(x) = \sqrt{x-2} + 3$ what we are calling g(x) is x - 2