Square Root Function - Finding the Domain

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function.

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

- Recall: The Domain of a function is the set of x values of the function. - We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

- Recall: The Domain of a function is the set of x values of the function. - We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function. We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

- We solve this inequality to find:

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function. Wessw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

-We solve this inequality to find: $\frac{-2}{3}<x<\frac{1}{2}$

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function. We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

- We solve this inequality to find: $\frac{-2}{3}<x<\frac{1}{2}$ Since $f(x)$ is not define for

The Domain is all other x-values.

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function. We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

-We solve this inequality to find: $\frac{-2}{3}<x<\frac{1}{2}$ Since $f(x)$ is not define for

Conclusion: Domain of $f(x)=\sqrt{6 x^{2}+x-2}$ is: $\left(-\infty, \frac{-2}{3}\right] \cup\left[\frac{1}{2}, \infty\right)$

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

Recall: The Domain of a function is the set of x values of the function. We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

We solve this inequality to find: $\frac{-2}{3}<x<\frac{1}{2}$ Since $f(x)$ is not define for

Conclusion: Domain of $f(x)=\sqrt{6 x^{2}+x-2}$ is: $\left(-\infty, \frac{-2}{3}\right] \cup\left[\frac{1}{2}, \infty\right)$ We can visualize the Domain on the number line:

Square Root Function - Finding the Domain

Example: Find the Domain of:

$$
f(x)=\sqrt{6 x^{2}+x-2}
$$

(Recall: The Domain of a function is the set of x values of the function. We saw that the domain of $f(x)$ consists of all x so that:

$$
6 x^{2}+x-2 \geq 0
$$

Another way we can think about this is that $f(x)$ is undefined if:

$$
6 x^{2}+x-2 \leq 0
$$

We solve this inequality to find: $\frac{-2}{3}<x<\frac{1}{2}$ Since $f(x)$ is not define for
The Domain is all other x-values.

$$
\frac{-2}{3}<x<\frac{1}{2}
$$

Conclusion: Domain of $f(x)=\sqrt{6 x^{2}+x-2}$ is: $\left(-\infty, \frac{-2}{3}\right] \cup\left[\frac{1}{2}, \infty\right)$ We can visualize the Domain on the number line:

