Solving Quadratic Inequalities - Example 2

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we solve the equality, we can not use the Quadratic Forumla.

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we ©solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side.

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we ©solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side.
Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:
$10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right)$

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we ©solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right)
$$

$$
\leq 0
$$

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we © solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
\begin{aligned}
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) & \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right) \\
6 x^{2}+x-2 & \leq 0
\end{aligned}
$$

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we © solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
\begin{aligned}
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) & \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right) \\
6 x^{2}+x-2 & \leq 0
\end{aligned}
$$

Now that we have 0 on one side.

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we ©solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
\begin{aligned}
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) & \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right) \\
6 x^{2}+x-2 & \leq 0
\end{aligned}
$$

Now that we have 0 on one side.
So, we can solve the quadratic inequality as

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we © solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
\begin{aligned}
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) & \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right) \\
6 x^{2}+x-2 & \leq 0
\end{aligned}
$$

Now that we have 0 on one side.
So, we can solve the quadratic inequality as
\rightarrow we did before
Finding that the solutions of $6 x^{2}+x-2 \leq 0$ are: $\left[\frac{-2}{3}, \frac{1}{2}\right]$

Solving Quadratic Inequalities - Example 2

Example 2: Find the solution(s) to:

$$
10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3
$$

In this example, we don't have 0 on one side
So, when we © solve the equality, we can not use the Quadratic Forumla.
So, the first step in solving a quadratic inequality is to get 0 on one side. Which we can do by Subtracting $4 x^{2}-5 x+3$ from both sides:

$$
\begin{aligned}
10 x^{2}-4 x+1-\left(4 x^{2}-5 x+3\right) & \leq 4 x^{2}-5 x+3-\left(4 x^{2}-5 x+3\right) \\
6 x^{2}+x-2 & \leq 0
\end{aligned}
$$

Now that we have 0 on one side.
So, we can solve the quadratic inequality as we did before
Finding that the solutions of $6 x^{2}+x-2 \leq 0$ are: $\left[\frac{-2}{3}, \frac{1}{2}\right]$
Conclusion: The solutions of $10 x^{2}-4 x+1 \leq 4 x^{2}-5 x+3$ are:

$$
\left[\frac{-2}{3}, \frac{1}{2}\right]
$$

