Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before

that a good first step to solving an inequality is to first solve the corresponding equality.

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We $rac{}$ saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We \triangleright saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

Solving this equality, we get:

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, -\frac{2}{3}$

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, -\frac{2}{3}$

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, -\frac{2}{3}$

Here, our number line is broken into 3 regions.

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, -\frac{2}{3}$

Here, our number line is broken into 3 regions.

Still, on each of the three regions (individually) we have either:

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}$, $-\frac{2}{3}$

Here, our number line is broken into 3 regions.

Still, on each of the three regions (individually) we have either:

1. $6x^2 + x - 2 > 0$ for *every* value on the region (no solutions) OR 2. $6x^2 + x - 2 < 0$ for *every* value on the region (all solutions)

Now that we can solve Quadratic Equations, we will learn to solve Quadratic *inequalities*

Example 1: Find the solution(s) to:

$$6x^2 + x - 2 \le 0$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.

So, let's first solve the equality:

$$6x^2 + x - 2 = 0$$

• Solving this equality, we get: $x = \frac{1}{2}, \frac{-2}{3}$

On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, -\frac{2}{3}$

LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS

Here, our number line is broken into 3 regions.

Still, on each of the three regions (individually) we have either: 1. $6x^2 + x - 2 > 0$ for *every* value on the region (no solutions)

OR 2. $6x^2 + x - 2 < 0$ for *every* value on the region (no solutions) We need to check each regions to see which are solutions.

Example 1: Find the solution(s) to: $6x^2 + x - 2 \le 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS $-5 -4 -3 -2 -1^{-2/3} 0 \frac{1/2}{12} 1 2 3 4 5$

We need to check each regions to see which are solutions.

Example 1: Find the solution(s) to: $6x^2 + x - 2 \le 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ *LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS UHS < RHS OR LHS > RHS* $-5 -4 -3 -2 -1 - 2/3 0 \frac{1}{2} 1 2 3 4 5$

We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS -5 -4 -3 -2 -1 -2/3 0 1/2 1 2 3 4We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS -5 -4 -3 -2 -1 -2/3 0 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS -5 -4 -3 -2 -1 -2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS -5 -4 -3 -2 -1 -2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS IHS < RHS OR IHS > RHS -5 -4 -3 -2 -1 -2/3 0 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{2}$ THS < RHS OR HS > RHS LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR HS > RHS LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS) LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$

x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; LHS = $6 \cdot 0^2 + 0 - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS) LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$

From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; *LHS* = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS) LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$

From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; *LHS* = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS) LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0

For x = 0; LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS) LHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS LHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$

x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution

Example 1: Find the solution(s) to: $6x^2 + x - 2 \le 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/3 0 1/2 1 2 3 4 5 We need to check each regions to see which are solutions.

From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; *LHS* = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; *LHS* = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS ILHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4: LHS = $6 \cdot 4^2 + 4 - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS ILHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4: LHS = $6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS ILHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4; LHS = $6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2 = 98$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS ILHS < RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4: LHS = $6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2 = 98 > 0$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{3}$ THS < RHS OR LHS > RHS OLHS < RHS OR LHS > RHS OR LHS > RHS -5 -4 -3 -2 -1-2/30 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0: LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4; LHS = $6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2 = 98 > 0$ x = 4 is not a solution

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{2}$ THS < RHS OK LHS > RHS IS < RHS OR LHS > -5 -4 -3 -2 -1 -2/3 0 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4; $LHS = 6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2 = 98 > 0$ x = 4 is not a solution. So, there's no solution for $x > \frac{1}{2}$

Example 1: Find the solution(s) to: $6x^2 + x - 2 < 0$ We find that $x = \frac{1}{2}, \frac{-2}{3}$ are the solutions to $6x^2 + x - 2 = 0$ On the number line, we mark that LHS = RHS at $x = \frac{1}{2}, \frac{-2}{2}$ THS < RHS OK LHS > RHS IS < RHS OR LHS > -5 -4 -3 -2 -1 -2/3 0 1/2 1 2 3 4 5 We need to check each regions to see which are solutions. From the region $x < -\frac{2}{3}$, we can pick the number x = -2For x = -2; LHS = $6 \cdot (-2)^2 + (-2) - 2 = 24 - 2 - 2 = 20 > 0$ x = -2 is not a solution. So, there's no solution for $x < -\frac{2}{3}$ From the region $-\frac{2}{3} < x < \frac{1}{2}$, we can pick the number x = 0For x = 0; LHS = $6 \cdot 0^2 + 0 - 2 = 0 + 0 - 2 = -2 < 0$ x = 0 is a solution. Every $-\frac{2}{3} < x < \frac{1}{2}$ is a solution From the region $x > \frac{1}{2}$, we can pick the number x = 2For x = 4; $LHS = 6 \cdot 4^2 + 4 - 2 = 96 + 4 - 2 = 98 > 0$ x = 4 is not a solution. So, there's no solution for $x > \frac{1}{2}$ **Conclusion:** The solutions to $6x^2 + x - 2 \le 0$ are: $\left[-\frac{2}{3}, \frac{1}{2}\right]$