Solving Quadratic Inequalities

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality is to first solve the corresponding equality.

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality
is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before that a good first step to solving an inequality is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

Solving this equality, we get:

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

Solving this equality, we get: $x=\frac{1}{2}, \frac{-2}{3}$

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality
is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

\square Solving this equality, we get: $x=\frac{1}{2}, \frac{-2}{3}$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2},-\frac{2}{3}$

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality
is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

- Solving this equality, we get:

On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2},-\frac{2}{3}$

$$
\widehat{-5}-4 \begin{array}{lllllll}
& -3 & -2 & -1 & -2 / 3 & 0 & 2
\end{array}
$$

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality
is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

- Solving this equality, we get:

On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2},-\frac{2}{3}$

$$
\begin{array}{lllllllll}
-5 & -4 & -3 & -2 & -1 & -2 / 30 & 1 / 2 & 2 & 3
\end{array}
$$

Here, our number line is broken into 3 regions.

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before
that a good first step to solving an inequality
is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

- Solving this equality, we get:

On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2},-\frac{2}{3}$

$$
\widehat{-5}
$$

Here, our number line is broken into 3 regions.
Still, on each of the three regions (individually) we have either:

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We csaw before that a good first step to solving an inequality is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

\checkmark Solving this equality, we get:
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2},-\frac{2}{3}$

$$
\begin{array}{lllllllll}
-5 & -4 & -3 & -2 & -1 & -2 / 30 \\
\hline
\end{array}
$$

Here, our number line is broken into 3 regions.
Still, on each of the three regions (individually) we have either:

1. $6 x^{2}+x-2>0$ for every value on the region (no solutions)

OR 2. $6 x^{2}+x-2<0$ for every value on the region (all solutions)

Solving Quadratic Inequalities

Now that we can solve Quadratic Equations, we will learn to solve Quadratic inequalities
Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We saw before that a good first step to solving an inequality is to first solve the corresponding equality.
So, let's first solve the equality:

$$
6 x^{2}+x-2=0
$$

- Solving this equality, we get:

On the number line, we mark that $L H S=R H S$ at

Here, our number line is broken into 3 regions. Still, on each of the three regions (individually) we have either:

1. $6 x^{2}+x-2>0$ for every value on the region (no solutions)

OR 2. $6 x^{2}+x-2<0$ for every value on the region (all solutions) We need to check each regions to see which are solutions.

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

$$
\begin{array}{lllllllllll}
L H S & L H \\
-5 & -4 & -3 & -2 & -1 & -2 / 3 & 0 & 1 / 2 & 1 & 2 & 3
\end{array} 4
$$

We need to check each regions to see which are solutions.

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$ $x=-2$ is not a solution

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ; L H S=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ;$ LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2=96+4-2$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ;$ LHS $=6 \cdot 4^{2}+4-2=96+4-2=98$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2=96+4-2=98>0$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that LHS $=$ RHS at $x=\frac{1}{2}, \frac{-2}{3}$

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2=96+4-2=98>0$
$x=4$ is not a solution

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2 ; L H S=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2=96+4-2=98>0$
$x=4$ is not a solution. So, there's no solution for $x>\frac{1}{2}$

Solving Quadratic Inequalities

Example 1: Find the solution(s) to:

$$
6 x^{2}+x-2 \leq 0
$$

We find that $x=\frac{1}{2}, \frac{-2}{3}$ are the solutions to $6 x^{2}+x-2=0$
On the number line, we mark that $L H S=R H S$ at

We need to check each regions to see which are solutions.
From the region $x<-\frac{2}{3}$, we can pick the number $x=-2$
For $x=-2$; LHS $=6 \cdot(-2)^{2}+(-2)-2=24-2-2=20>0$
$x=-2$ is not a solution. So, there's no solution for $x<-\frac{2}{3}$
From the region $-\frac{2}{3}<x<\frac{1}{2}$, we can pick the number $x=0$
For $x=0 ; L H S=6 \cdot 0^{2}+0-2=0+0-2=-2<0$
$x=0$ is a solution. Every $-\frac{2}{3}<x<\frac{1}{2}$ is a solution
From the region $x>\frac{1}{2}$, we can pick the number $x=2$
For $x=4 ; L H S=6 \cdot 4^{2}+4-2=96+4-2=98>0$
$x=4$ is not a solution. So, there's no solution for $x>$
Conclusion: The solutions to $6 x^{2}+x-2 \leq 0$ are: $\left[-\frac{2}{3}, \frac{1}{2}\right]$

