Economics Application

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:
$p=\frac{-b}{2 a}$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:
$p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15$
So, the max Revenue at the vertex:
$R(p)=$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:
$p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15$
So, the max Revenue at the vertex:

$$
R(p)=R(15)
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product.
The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}=225
$$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}=225
$$

Conclusion: The max Revenue is ${ }^{\$} 225$ if we sell mics for ${ }^{\$} 15$ each

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

CThe Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}=225
$$

Conclusion: The max Revenue is $\$ 225$ if we sell mics for ${ }^{\$} 15$ each Note: Our x-intercepts, also, help us interpret our application.

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}=225
$$

Conclusion: The max Revenue is $\$ 225$ if we sell mics for ${ }^{\$} 15$ each Note: Our x-intercepts, also, help us interpret our application. If $p=0$ (the microphones are free) then Revenue, $R=0$

Economics Application

Definition: The Revenue of a business is the amount of money that they bring in from the sales of their product(s).
Note: Revenue does not take into the cost to make their product. The amount of money that the company "keeps" is called Profit

$$
\text { Profit }=\text { Revenue }- \text { Cost }
$$

Example: Suppose that the Revenue (R) of a company selling cheap microphones (to teachers making math videos) for $\$ p$ is modeled by:

$$
R(p)=30 p-p^{2}
$$

What is the maximum Revenue that the company can bring in?
To get a visualization of the problem, let's look at the graph of $R(p)$

- The Max Value of R is at the vertex We can see this graphically or algebraically since $a=-1<0$ At the vertex:

$$
p=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15
$$

So, the max Revenue at the vertex:

$$
R(p)=R(15)=30 \cdot 15-15^{2}=225
$$

Conclusion: The max Revenue is $\$ 225$ if we sell mics for ${ }^{\$} 15$ each Note: Our x-intercepts, also, help us interpret our application.
If $p=0$ (the microphones are free) then Revenue, $R=0$
At the other intercept, $R=0$ because no one is willing to buy any!

