Physics Application

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?

What is the Maximum height?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?

What is the Maximum height?

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$
What is the Maximum height?

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$

What is the Maximum height?

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}$

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$ Since $t=1$, the max height is: $f(1)$

When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48$
When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft When does the ball hit the ground?

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex

The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft
When does the ball hit the ground?
When the ball hits the ground, $0=f(t)$

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex

The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft When does the ball hit the ground?
When the ball hits the ground, $0=f(t)=-16 t^{2}+32 t+48$

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex

The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is $64 f t$ When does the ball hit the ground?
When the ball hits the ground, $0=f(t)=-16 t^{2}+32 t+48$
So, to find t, we need to solve: $0=-16 t^{2}+32 t+48$

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft
When does the ball hit the ground?
When the ball hits the ground, $0=f(t)=-16 t^{2}+32 t+48$
So, to find t, we need to solve: $0=-16 t^{2}+32 t+48$
- We can solve this using the Quadratic Formula to find:

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft
When does the ball hit the ground?
When the ball hits the ground, $0=f(t)=-16 t^{2}+32 t+48$
So, to find t, we need to solve: $0=-16 t^{2}+32 t+48$
CWe can solve this using the Quadratic Formula to find: $t=\gg 3$ Since our model is for after the ball is thrown, we need $t \geq 0$

Physics Application

Suppose that we throw a ball off the roof of Frost. The height (f) of the ball (in feet) after being in the air for t seconds is modeled by:

$$
f(t)=-16 t^{2}+32 t+48
$$

How high is the ball thrown from?
The ball is thrown at $t=0$, so the height is: $f(0)=48$
Conclusion: the height of the ball when it is thrown is 48 ft What is the Maximum height?

- We saw that the maximum of a quadratic occurs are that vertex The time of the maximum height is: $h=\frac{-32}{2 \cdot(-16)}=1$
Since $t=1$, the max height is: $f(1)=-16 \cdot 1^{2}+32 \cdot 1+48=64$
Conclusion: the maximum height of the ball is 64 ft
When does the ball hit the ground?
When the ball hits the ground, $0=f(t)=-16 t^{2}+32 t+48$
So, to find t, we need to solve: $0=-16 t^{2}+32 t+48$
CWe can solve this using the Quadratic Formula to find: $t=\gg 3$ Since our model is for after the ball is thrown, we need $t \geq 0$ Conclusion: The ball hits the ground after 3 seconds

