Maximums and Minimums of Quadratic Functions

Maximums and Minimums of Quadratic Functions
(Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

Maximums and Minimums of Quadratic Functions

Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

Maximums and Minimums of Quadratic Functions

Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

Maximums and Minimums of Quadratic Functions

(Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

Maximums and Minimums of Quadratic Functions

(Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

How can we tell if the vertex is the minimum (k is the lowest y-value)

Maximums and Minimums of Quadratic Functions

- Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

How can we tell if the vertex is the minimum (k is the lowest y-value) Or the vertex is the maximum (k is the highest y-value)?

Maximums and Minimums of Quadratic Functions

- Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

How can we tell if the vertex is the minimum (k is the lowest y-value)
Or the vertex is the maximum (k is the highest y-value)?

- We saw: that a will reflect the basic graph of $y=x^{2}$ across the x-axis

$$
\text { if } a<0
$$

Maximums and Minimums of Quadratic Functions

- Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

How can we tell if the vertex is the minimum (k is the lowest y-value)
Or the vertex is the maximum (k is the highest y-value)?

- We saw: that a will reflect the basic graph of $y=x^{2}$ across the x-axis

$$
\text { if } a<0 \quad \Leftrightarrow \quad \text { the vertex is a maximum }
$$

Maximums and Minimums of Quadratic Functions

- Recall: The vertex (h, k) is the extreme point of the graph:

$$
y=a x^{2}+b x+c
$$

- We found a shortcut to writing this in vertex form:

$$
y=a(x-h)^{2}+k
$$

- We have seen Examples where the vertex is a minimum

- And Examples where the vertex is a maximum

How can we tell if the vertex is the minimum (k is the lowest y-value)
Or the vertex is the maximum (k is the highest y-value)?

- We saw that a will reflect the basic graph of $y=x^{2}$ across the x-axis

$$
\begin{array}{lll}
\text { if } a<0 & \Leftrightarrow & \text { the vertex is a maximum } \\
\text { if } a>0 & \Leftrightarrow & \text { the vertex is a minimum }
\end{array}
$$

