Revisiting Vertex Form

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process!

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex. For this reason, we call this the Vertex Form

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
h=\frac{-(-4)}{2 \cdot 2}
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} \\
& =\frac{4}{4}
\end{aligned}
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

$$
k=f(1)
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} \\
& =\frac{4}{4}
\end{aligned}
$$

$$
k=f(1)
$$

$$
=2 \cdot 1^{2}-4 \cdot 1+5
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k $h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
k & =f(1) \\
& =2 \cdot 1^{2}-4 \cdot 1+5 \\
& =2-4+5=3
\end{aligned}
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example
We have now seen that the values (h, k) are the coordinates of the Vertex.
For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k $h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} & k & =f(1) \\
& =\frac{4}{4} & & =2 \cdot 1^{2}-4 \cdot 1+5 \\
& =1 & & =2-4+5=3
\end{aligned}
$$

Since $h=1$ and $k=3$ and we can clearly see $a=2$, the vertex form is:

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! ©example

- We have now seen that the values (h, k) are the coordinates of the Vertex.

For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} & k & =f(1) \\
& =\frac{4}{4} & & =2 \cdot 1^{2}-4 \cdot 1+5 \\
& =1 & & =2-4+5=3
\end{aligned}
$$

Since $h=1$ and $k=3$ and we can clearly see $a=2$, the vertex form is:

$$
2 x^{2}-4 x+5=2(x-1)^{2}+3
$$

Revisiting Vertex Form

Recall: Before we found the Quadratic Formula (and the way we found the Quadratic Formula), we solved equations:

$$
a x^{2}+b x+c=0
$$

By putting them in the form:

$$
a(x-h)^{2}+k
$$

It was a time-consuming and difficult process! Example

- We have now seen that the values (h, k) are the coordinates of the Vertex.

For this reason, we call this the Vertex Form
We now have a shortcut to find the values of h and k
$h=\frac{-b}{2 a}$ and $k=f(h)$
Example: Put $2 x^{2}-4 x+5$ into Vertex form

$$
\begin{aligned}
h & =\frac{-(-4)}{2 \cdot 2} & k & =f(1) \\
& =\frac{4}{4} & & =2 \cdot 1^{2}-4 \cdot 1+5 \\
& =1 & & =2-4+5=3
\end{aligned}
$$

Since $h=1$ and $k=3$ and we can clearly see $a=2$, the vertex form is:

$$
2 x^{2}-4 x+5=2(x-1)^{2}+3
$$

Notice that this method is a much faster process than we had before, but we needed to understand the graph to use this method

