Graphing Quadratic Equations with 2 variable

Graphing Quadratic Equations with 2 variable

 Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept
The x-intercep ts)

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept
The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept:
The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0$
The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c$
The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c$ The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s)

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$

[^0]The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s):
Like with lines the x-intercept happens when $y=0$

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0$

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$

The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$ The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$ The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

$$
\begin{aligned}
& y \text {-int: }(0, c) \\
& x \text {-int: }\left(r_{1}, 0\right),\left(r_{2}, 0\right)
\end{aligned}
$$

Note: We get 0,1 , or 2 for each of the real roots.

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$ The vertex

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

$$
\begin{aligned}
& y \text {-int: }(0, c) \\
& x \text {-int: }\left(r_{1}, 0\right),\left(r_{2}, 0\right)
\end{aligned}
$$

$$
\text { Note: We get } 0,1 \text {, or } 2
$$ for each of the real roots.

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$ The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$
The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

$$
\begin{aligned}
& y \text {-int: }(0, c) \\
& x \text {-int: }\left(r_{1}, 0\right),\left(r_{2}, 0\right)
\end{aligned}
$$

Note: We get 0,1 , or 2 for each of the real roots.

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s): Like with lines the x-intercept happens when $y=0$
If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$
The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Once we know $x=h$ at the point, we can find k

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

$$
\begin{aligned}
& y \text {-int: }(0, c) \\
& x \text {-int: }\left(r_{1}, 0\right),\left(r_{2}, 0\right)
\end{aligned}
$$

Note: We get 0,1 , or 2 for each of the real roots.

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$ The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Once we know $x=h$ at the point, we can find $k=f(h)$

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:
 y-int: $(0, c)$ x-int: $\left(r_{1}, 0\right),\left(r_{2}, 0\right)$
Note: We get 0,1 , or 2 for each of the real roots. vertex: (h, k)
(h, k)

The y-intercept: Like with lines the y-intercept happens when $x=0$ If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s): Like with lines the x-intercept happens when $y=0$ If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$ The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Once we know $x=h$ at the point, we can find $k=f(h)$

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:
 y-int: $(0, c)$ x-int: $\left(r_{1}, 0\right),\left(r_{2}, 0\right)$ Note: We get 0,1 , or 2 for each of the real roots. vertex: (h, k)
Note: The graph is symmetric across the line $x=h$

The y-intercept: Like with lines the y-intercept happens when $x=0$
If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s): Like with lines x-intercept happens when $y=0$
If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$
The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Once we know $x=h$ at the point, we can find $k=f(h)$

Graphing Quadratic Equations with 2 variable

Graphing the solutions to $y=f(x)=a x^{2}+b x+c$
To graph a quadratic equation, we need to find our important points:

$$
\begin{aligned}
& y \text {-int: }(0, c) \\
& x \text {-int: }\left(r_{1}, 0\right),\left(r_{2}, 0\right)
\end{aligned}
$$

Note: We get 0,1 , or 2 for each of the real roots. vertex: (h, k)
Note: The graph is symmetric across the line $x=h$
Called: The Line of Symmetry
The y-intercept: Like with lines the y-intercept happens when $x=0$
If $x=0, y=a \cdot 0^{2}+b \cdot 0+c=c \quad \Rightarrow \quad y$-int: $(0, c)$
The x-intercept(s): Like with lines the x-intercept happens when $y=0$
If $y=0,0=a x^{2}+b x+c$
We can solve this using the Quadratic Formula, $r_{1,2}=\frac{-(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}$
The vertex happens at the point (h, k)

- We saw when we built the Quadratic Formula that $h=\frac{-b}{2 a}$

Once we know $x=h$ at the point, we can find $k=f(h)$

[^0]: The x-intercept(s)

