


Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

• Recall: To graph a quadratic, we need to find the important points:

y-int

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

$$y-int$$
 $x-int$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

• Recall: To graph a quadratic, we need to find the important points:

$$y-int$$
 $x-int$

vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

• Recall: To graph a quadratic, we need to find the important points:

$$y$$
-int $x = 0$ vertex

x-int

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int
$$x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25$$
 vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int
$$x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$$

vertex $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$
 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
How do we solve this?
Using the Quadratic Formula

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex

x-int

$$y = 0 \Rightarrow 0 = x^2 - 10x + 25$$

How do we solve this?
Using the Quadratic Formula

 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int: (0,25)

$$x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$$

vertex

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
h

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a}$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1}$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int: (0,25)

$$x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$$

vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$
 $k = f(h)$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$
 $k = f(h) = f(5)$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$
 $k = f(h) = f(5) = 0$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 10x + 25$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$20$$

$$10$$

$$-8$$

$$-6$$

$$-4$$

$$-2$$

$$0$$

$$24$$

$$6$$

$$8$$

$$-10$$

$$-20$$

$$-30$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)$$

$$10$$

$$-8 -6 -4 -2 0 2 4 6 8$$

$$-10$$

$$-20$$

$$-30$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)$$

$$10$$

$$-8 -6 -4 -2 0 2 4 6 8$$

$$-10$$

$$-20$$

$$-30$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)$$

$$10$$

$$-8 - 6 - 4 - 2 \qquad 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8$$

$$-10 \qquad (5, 0)$$

$$-20 \qquad (5, 0)$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$
 $k = f(h) = f(5) = 0$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)$$

$$10$$

$$-8 - 6 - 4 - 2 0 2 4 6 8$$

$$-10 (5, 0)$$

$$-20 (5, 0)$$

$$-30$$
To graph a quadratic way need to find the important point

• Recall: To graph a quadratic, we need to find the important points:

y-int: (0,25)

$$x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$$

vertex: (5,0)
 $h = \frac{-b}{2a} = \frac{-(-10)}{2 \cdot 1} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)^{30}$$

$$10$$

$$-8 -6 -4 -2 0 2 4 6 8$$

$$-10 (5, 0)$$

$$-20 (5, 0)$$

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2a} = \frac{-(-10)}{24} = 5$

$$k = f(h) = f(5) = 0$$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula

$$r_1, r_2 = 5, 5$$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 10x + 25$$

$$(0, 25)$$

$$10$$

$$-8 -6 -4 -2 0 2 4 6 8$$

$$(5, 0)$$

$$-20$$

$$-30$$

$$-30$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,25)$$

 $x = 0 \Rightarrow y = 0^2 - 10 \cdot 0 + 25 = 25$
vertex: $(5,0)$
 $h = \frac{-b}{2\pi} = \frac{-(-10)}{21} = 5$

x-int:
$$(5,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 10x + 25$
How do we solve this?
Using the Quadratic Formula
 $r_1, r_2 = 5, 5$