


**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$



**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

$$y-int$$
  $x-int$ 

vertex

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

$$y$$
-int  $x = 0$  vertex

x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int 
$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5$$
 vertex

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int 
$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex  $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$ 

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int: (0,5) 
$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  $y = 0$  vertex

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex

x-int  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the  
But there are no solutions

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int: 
$$(0,5)$$
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$ 
vertex

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$ 
Using the
But there are no solutions
So, there are no  $x$ -int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions

So, there are no x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex  
h

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions

So, there are no x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex  
 $h = \frac{-b}{2a}$ 

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the  
But there are no solutions

So, there are no  $\times$ -int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex  
 $h = \frac{-b}{2a} = \frac{-4}{2 \cdot 1}$ 

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the  
But there are no solutions

So, there are no x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex  
 $h = \frac{-b}{2^a} = \frac{-4}{21} = -2$ 

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the  
But there are no solutions

So, there are no  $\times$ -int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex  
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions So, there are no x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex  
 $h = \frac{-b}{2^a} = \frac{-4}{21} = -2$   
 $k = f(h)$ 

 $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions

So, there are no x-int

x-int: none

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex  
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$   
 $k = f(h) = f(-2)$ 

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the

But there are no solutions So, there are no x-int

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex  
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

k = f(h) = f(-2) = 1

 $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions So, there are no x-int

x-int: none

**Example:** Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex:  $(-2,1)$   
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ So, there are no k = f(h) = f(-2) = 1

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the

But there are no solutions So, there are no x—int

**Example:** Sketch the graph of:

$$y = f(x) = x^{2} + 4x + 5$$

6

4

2

0

2

-4

-2

-4

-6

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex:  $(-2,1)$   
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

k = f(h) = f(-2) = 1

x-int: none  

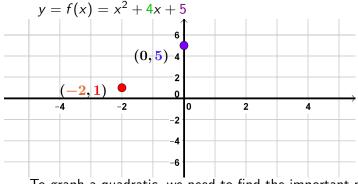
$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the  
But there are no solutions

So, there are no x-int

**Example:** Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex:  $(-2,1)$   
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 


k = f(h) = f(-2) = 1

x-int: none  

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the

But there are no solutions So. there are no x—int

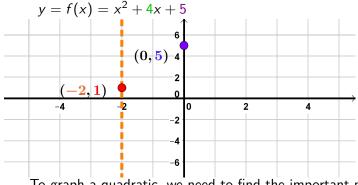
**Example:** Sketch the graph of:



To graph a quadratic, we need to find the important points:

y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex: (-2,1)  
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 


k = f(h) = f(-2) = 1

x-int: none  

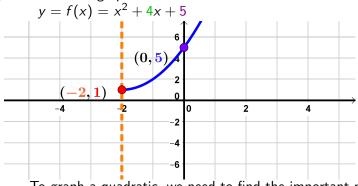
$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$
  
Using the

But there are no solutions So. there are no x—int

**Example:** Sketch the graph of:



To graph a quadratic, we need to find the important points:


y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex:  $(-2,1)$   
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

k = f(h) = f(-2) = 1

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the

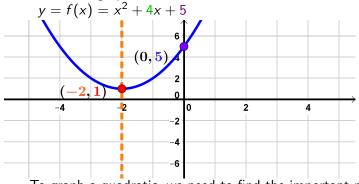
But there are no solutions So, there are no x-int

**Example:** Sketch the graph of:



To graph a quadratic, we need to find the important points:

y-int: (0,5)  


$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex: (-2,1)  
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$ 

k = f(h) = f(-2) = 1

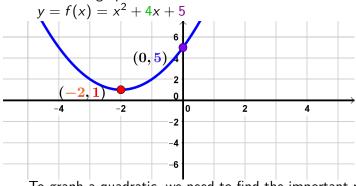
x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions

So, there are no  $\times$ -int

**Example:** Sketch the graph of:



To graph a quadratic, we need to find the important points:


y-int: (0,5)  

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
  
vertex: (-2,1)  
 $h = \frac{-b}{2^a} = \frac{-4}{21} = -2$ 

k = f(h) = f(-2) = 1

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the But there are no solutions So, there are no x-int

**Example:** Sketch the graph of:



To graph a quadratic, we need to find the important points:

y-int: 
$$(0,5)$$
  
 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$   
vertex:  $(-2,1)$   
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$   
 $k = f(h) = f(-2) = 1$ 

x-int: none  $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the

But there are no solutions So, there are no x-int