

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

$$y-int$$
 $x-int$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

$$y-int$$
 $x-int$

vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

$$y$$
-int $x = 0$ vertex

x-int

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

x-int

y-int

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5$$

vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

x-int

y-int

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$

vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int: (0,5)
$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$
 $y = 0$ vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int: (0,5)

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$

vertex

$$x$$
-int
 $y = 0 \Rightarrow 0 = x^2 + 4x + 5$
Using the Quadratic Formula

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex

x-int $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the Quadratic Formula

But there are no solutions

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int: (0,5)

$$x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$$

vertex
h

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a}$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2^a} = \frac{-4}{2 \cdot 1}$

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

x-int: none $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the Quadratic Formula But there are no solutions

So, there are no \times -int

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

x—int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula
But there are no solutions
So, there are no x—int

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

k = f(h)

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Precallo To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

k = f(h) = f(-2)

 $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the Quadratic Formula But there are no solutions So, there are no x—int

x-int: none

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

Precallo To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

k = f(h) = f(-2) = 1

 $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the Quadratic Formula But there are no solutions So, there are no x—int

x-int: none

Example: Sketch the graph of:

$$y = f(x) = x^2 + 4x + 5$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

k = f(h) = f(-2) = 1

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

$$y = f(x) = x^{2} + 4x + 5$$

6

-4

-2

0

2

-4

-2

-4

-6

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

$$y = f(x) = x^{2} + 4x + 5$$

$$(0,5) = 4$$

$$-4 \qquad -2 \qquad 0 \qquad 2 \qquad 4$$

$$-4 \qquad -4 \qquad -6$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula
But there are no solutions

So, there are no x-int

Example: Sketch the graph of:

$$y = f(x) = x^{2} + 4x + 5$$

$$(0,5) = x^{2} + 4x + 5$$

$$(0,5) = x^{2} + 4x + 5$$

$$(-2,1) = 0$$

$$-4 = -2$$

$$-4 = -2$$

$$-4 = -6$$

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$

k = f(h) = f(-2) = 1

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none

$$y = 0 \Rightarrow 0 = x^2 + 4x + 5$$

Using the Quadratic Formula

Example: Sketch the graph of:

• Recall: To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 + 4 \cdot 0 + 5 = 5$
vertex: $(-2,1)$
 $h = \frac{-b}{2a} = \frac{-4}{21} = -2$
 $k = f(h) = f(-2) = 1$

x-int: none $y = 0 \Rightarrow 0 = x^2 + 4x + 5$ Using the Quadratic Formula But there are no solutions

So, there are no x-int