Graphing Quadratic Equations with 2 variable - Example 2

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int
x-int
vertex

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int
x-int
$x=0$
vertex

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

$$
\begin{aligned}
& y \text {-int } \\
& x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6 \\
& \text { vertex }
\end{aligned}
$$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

$$
\begin{aligned}
& y \text {-int } \\
& x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6 \\
& \text { vertex }
\end{aligned}
$$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

$$
\begin{aligned}
& y \text {-int: }(0,6) \\
& x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6
\end{aligned}
$$

vertex

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

$$
\begin{array}{ll}
y \text {-int: }(0,6) & x \text {-int } \\
x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6 & y=0 \\
\text { vertex } &
\end{array}
$$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

| | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | F

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$
vertex
x-int
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
x-int
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
x-int
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
x-int
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:

$$
\begin{aligned}
& y \text {-int: }(0,6) \\
& x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6 \\
& \text { vertex } \\
& h
\end{aligned}
$$

$$
\begin{aligned}
& x \text {-int: }(-1,0),(3,0) \\
& y=0 \Rightarrow 0=-2 x^{2}+4 x+6
\end{aligned}
$$

How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$ How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$ How do we solve this?
Using the

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
k
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

						8			

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2

Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2
Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2
Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2
Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

Graphing Quadratic Equations with 2 variable - Example 2
Example: Sketch the graph of:

$$
y=f(x)=-2 x^{2}+4 x+6
$$

To graph a quadratic, we need to find the important points:
y-int: $(0,6)$
$x=0 \Rightarrow y=-2 \cdot 0^{2}+4 \cdot 0+6=6$ vertex: $(1,8)$
$h=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1$
$k=f(h)=f(1)=8$
x-int: $(-1,0),(3,0)$
$y=0 \Rightarrow 0=-2 x^{2}+4 x+6$
How do we solve this?
Using the
$r_{1}, r_{2}=-1,3$

