Example: Sketch the graph of:

 $y = f(x) = -2x^2 + 4x + 6$

Example: Sketch the graph of:

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int

x - int

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int

$$x - int$$

vertex

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

x - int

y-intx = 0vertex

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int x-int $x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6$ vertex

Example: Sketch the graph of:

y-int x = 0
$$\Rightarrow$$
 y = -2 \cdot 0² + 4 \cdot 0 + 6 = 6
vertex

Example: Sketch the graph of:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex

Example: Sketch the graph of:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex
 $x = 0$

Example: Sketch the graph of:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex
 $x = 0 \Rightarrow 0 = -2x^2 + 4x + 6$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex

x-int

 $y = 0 \Rightarrow 0 = -2x^2 + 4x + 6$ How do we solve this?

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex

x-int

 $y = 0 \Rightarrow 0 = -2x^2 + 4x + 6$

How do we solve this? Using the

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex

x-int

 $y = 0 \Rightarrow 0 = -2x^2 + 4x + 6$ How do we solve this? Using the $r_1, r_2 = -1, 3$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex
h

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^2 + 4 \cdot 0 + 6 = 6$$

vertex
 $h = \frac{-b}{2a}$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$
vertex

$$h = \frac{-b}{2a} = \frac{-4}{2(-2)}$$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$
vertex

$$h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6) $x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$ vertex $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$ k

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$
vertex

$$h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$$

$$k = f(h)$$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6) $x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$ vertex $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$ k = f(h) = f(1)

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int: (0,6) $x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$ vertex $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$ k = f(h) = f(1) = 8

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

-4

Example: Sketch the graph of: $y = f(x) = -2x^2 + 4x + 6$

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

x-int: (-1,0), (3,0)y = 0 \Rightarrow 0 = $-2x^2+4x+6$ How do we solve this? Using the $r_1, r_2 = -1, 3$

6

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

To graph a quadratic, we need to find the important points:

y-int: (0,6)

$$x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$$

vertex: (1,8)
 $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$
 $k = f(h) = f(1) = 8$

y-int: (0,6) $x = 0 \Rightarrow y = -2 \cdot 0^{2} + 4 \cdot 0 + 6 = 6$ vertex: (1,8) $h = \frac{-b}{2a} = \frac{-4}{2(-2)} = 1$ k = f(h) = f(1) = 8

k = f(h) = f(1) = 8

 $r_1, r_2 = -1, 3$