Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$:

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of:

 $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$:

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$:

Recall: The Quadratic Formula says r_1 and r_2 are the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $= \frac{-4 \pm \sqrt{16 + 48}}{-4}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $\frac{-4\pm\sqrt{16+48}}{-4}$

 $=\frac{-4\pm\sqrt{64}}{-4}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $\frac{-4 \pm \sqrt{16 + 48}}{-4}$ $\frac{-4\pm\sqrt{64}}{-4}$ $\frac{-4\pm8}{4}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^2 + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $\frac{-4\pm\sqrt{16+48}}{-4}$ $\frac{-4\pm\sqrt{64}}{-4}$ $\frac{-4 \pm 8}{-4}$ $=\frac{4}{4}$ and $\frac{-12}{4}$

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $\frac{-4\pm\sqrt{16+48}}{-4}$ $\frac{-4\pm\sqrt{64}}{-4}$ $\frac{-4 \pm 8}{4}$ $=\frac{4}{4}$ and $\frac{-12}{4}$

= -1 and 3

Solving the quadratic equation: $-2x^2 + 4x + 6 = 0$: Recall: The \bigcirc Quadratic Formula says r_1 and r_2 are \bigcirc the roots of: $ax^{2} + bx + c = 0$ $r_{1,2} = \frac{-(b) \pm \sqrt{(b)^2 - 4ac}}{2a}$ $r_{1,2} = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot -2 \cdot 6}}{2 \cdot -2}$ $\frac{-4\pm\sqrt{16+48}}{-4}$ $\frac{-4\pm\sqrt{64}}{4}$ $=\frac{-4\pm8}{4}$ $=\frac{4}{4}$ and $\frac{-12}{4}$ = -1 and 3 The solutions to $-2x^2 + 4x + 6 = 0$ are: $x = r_{1,2} = -1, 3$