

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

To graph a quadratic, we need to find the important points:

y-int

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

To graph a quadratic, we need to find the important points:

y-int x-int

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

To graph a quadratic, we need to find the important points:

$$y-int$$
 $x-int$

vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

To graph a quadratic, we need to find the important points:

$$y$$
-int $x = 0$ vertex

x-int

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int
$$x = 0 \Rightarrow y = \cdot 0^2 - 6 \cdot 0 + 5$$
 vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int
$$x = 0 \Rightarrow y = \cdot 0^2 - 6 \cdot 0 + 5 = 5$$

vertex $x = 0 \Rightarrow y = 0^2 - 6 \cdot 0 + 5 = 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int: (0,5)
$$x = 0 \Rightarrow y = 0^2 - 6 \cdot 0 + 5 = 5$$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$ vertex

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$
 $x = 0 \Rightarrow y = \cdot 0^2 - 6 \cdot 0 + 5 = 5$ $y = 0 \Rightarrow 0 = x^2 - 6x + 5$ How do we solve this?

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int: (0,5)

$$x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$$

vertex

x-int

$$y = 0 \Rightarrow 0 = x^2 - 6x + 5$$

How do we solve this?
Using the

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int: (0,5)

$$x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$$

vertex

x-int

$$y = 0 \Rightarrow 0 = x^2 - 6x + 5$$

How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
h

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a}$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1}$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = \cdot 0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int: (0,5)

$$x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$$

vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 k

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h)$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3)$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^2 - 6x + 5$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex
 $h = \frac{-b}{2a} = \frac{-(-6)}{2.1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0), (5,0)$$

 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 6x + 5$$

y-int: (0,5)

$$x = 0 \Rightarrow y = 0^2 - 6 \cdot 0 + 5 = 5$$

vertex: (3, -4)
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 6x + 5$$

$$(0, 5) \stackrel{6}{4}$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$=$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 6x + 5$$

$$(0,5)_{4}$$

$$-6$$

$$-2$$

$$(1,0)$$

$$(5,0)$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2.1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $x_1, x_2 = 1, 5$

Example: Sketch the graph of:

$$y = f(x) = x^{2} - 6x + 5$$

$$(0,5)_{4}$$

$$-6 \qquad -4 \qquad -2 \qquad 0 \qquad 2 \qquad 4 \qquad (5,0)$$

$$-2 \qquad (1,0) \qquad (3,-4)$$

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the

$$r_1, r_2 = 1, 5$$

Example: Sketch the graph of:

To graph a quadratic, we need to find the important points:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

$$y = 0 \Rightarrow 0 = x^2 - 6x + 5$$

How do we solve this?
Using the

 \times -int: (1,0),(5,0)

 $r_1, r_2 = 1, 5$

Example: Sketch the graph of:

y-int: (0,5)

$$x = 0 \Rightarrow y = .0^2 - 6 \cdot 0 + 5 = 5$$

vertex: (3, -4)
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $x_1, x_2 = 1, 5$

Example: Sketch the graph of:

y-int:
$$(0,5)$$

 $x = 0 \Rightarrow y = 0^2 - 6 \cdot 0 + 5 = 5$
vertex: $(3, -4)$
 $h = \frac{-b}{2a} = \frac{-(-6)}{2 \cdot 1} = 3$
 $k = f(h) = f(3) = -4$

x-int:
$$(1,0)$$
, $(5,0)$
 $y = 0 \Rightarrow 0 = x^2 - 6x + 5$
How do we solve this?
Using the
 $r_1, r_2 = 1, 5$