Remainder Theorem and Factoring

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

Recall A root of $P(x)$ is a value of x so $P=0$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

- Recall A root of $P(x)$ is a value of x so $P=0$

Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

(Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}
$$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

(Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

(Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

(Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$
Conclusion: $P(k)=0 \quad \Longleftrightarrow \quad(x-k)$ is a factor of $P(x)$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(\mathrm{x}-\mathrm{k})$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

(Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$

Conclusion: $\quad P(k)=0$
Alternatively: $P(k)=0$
\Longleftrightarrow
\Longleftrightarrow
$(x-k)$ is a factor of $P(x)$

$$
P(x)=(x-k) \cdot Q(x)
$$

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

© Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$

Conclusion: $\quad P(k)=0$
Alternatively: $P(k)=0$
Note: This should not come as a huge surprise because we saw the same relationship between roots and factors when we worked with quadratics.

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

© Recall A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$
Conclusion: $P(k)=0 \quad \Longleftrightarrow \quad(x-k)$ is a factor of $P(x)$
Alternatively: $P(k)=0 \quad \Longleftrightarrow \quad P(x)=(x-k) \cdot Q(x)$
Note: This should not come as a huge surprise because we saw the same relationship between roots and factors when we worked with quadratics.

- We used this to write quadratics in factored form from the roots we found from the quadratic equation.

Remainder Theorem and Factoring

- We saw that if we divide $P(x)$ by $(x-k)$ we can conclude:

$$
P(x)=(x-k) \cdot Q(x)+P(k)
$$

© Recill A root of $P(x)$ is a value of x so $P=0$
Notice: if $x=k$ is a root, then $P(k)=0$
Using this in our above equation for $P(x)$ we get:

$$
P(x)=(x-k) \cdot Q(x)+\underbrace{P(k)}_{0}=(x-k) \cdot Q(x)
$$

But that means $(x-k)$ is a factor of $P(x)$
Conclusion: $P(k)=0 \quad \Longleftrightarrow \quad(x-k)$ is a factor of $P(x)$
Alternatively: $P(k)=0 \quad \Longleftrightarrow \quad P(x)=(x-k) \cdot Q(x)$
Note: This should not come as a huge surprise because we saw the same relationship between roots and factors when we worked with quadratics.

- We used this to write quadratics in factored form from the roots we found from the quadratic equation.
We just see here that it is true for polynomials with higher degrees.

