
Remainder Theorem

Recall When we divide two polynomials, we get:
P(x)
D(x) = Q(x) + R(x)

D(x)
We saw that multiplying by D(x) let us re-write this as:

P(x) = D(x) · Q(x) + R(x)
Where the degree(R) < degree(D)
Let’s look at a special case of dividing by x − k
Since the deg(R) < deg(x − k) = 1, it must be that deg(R) = 0
This means that the remainder is a constant r
So, we get:

P(x) = (x − k) · Q(x) + r
This is our second equation with: R(x) = r and D(x) = (x − k)
Notice what happens when we evaluate at x = k

Conclusion: The remainder r from P(x)
x − k is P(k)
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