Remainder Theorem

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Remainder Theorem

Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Remainder Theorem

Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

Remainder Theorem

\rightarrow Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$

Remainder Theorem

\rightarrow Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$ Notice what happens when we evaluate at $x=k$

Remainder Theorem

\rightarrow Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$ Notice what happens when we evaluate at $x=k$

$$
P(k)=(k-k) \cdot Q(k)+r
$$

Remainder Theorem

\rightarrow Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$ Notice what happens when we evaluate at $x=k$

$$
P(k)=\underbrace{(k-k)}_{0} \cdot Q(k)+r
$$

Remainder Theorem

\rightarrow Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$ Notice what happens when we evaluate at $x=k$

$$
P(k)=\underbrace{(k-k)}_{0} \cdot Q(k)+r=r
$$

Remainder Theorem

- Recall When we divide two polynomials, we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

- We saw that multiplying by $D(x)$ let us re-write this as:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
Let's look at a special case of dividing by $x-k$
Since the $\operatorname{deg}(R)<\operatorname{deg}(x-k)=1$, it must be that $\operatorname{deg}(R)=0$
This means that the remainder is a constant r
So, we get:

$$
P(x)=(x-k) \cdot Q(x)+r
$$

This is our second equation with: $R(x)=r$ and $D(x)=(x-k)$ Notice what happens when we evaluate at $x=k$

$$
P(k)=\underbrace{(k-k)}_{0} \cdot Q(k)+r=r
$$

Conclusion: The remainder r from $\frac{P(x)}{x-k}$ is $P(k)$

