Finding Roots of Polynomials - Example 3 - Recap

Finding Roots of Polynomials - Example 3 - Recap Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$

Finding Roots of Polynomials - Example 3 - Recap Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to: $x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$

Finding Roots of Polynomials - Example 3 - Recap

 Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to: $x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$We found the roots $x=1,-2$ of $P(x)$ using the

Finding Roots of Polynomials - Example 3 - Recap

 Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to: $x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$We found the roots $x=1,-2$ of $P(x)$ using the
Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem
Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Finding Roots of Polynomials - Example 3 - Recap

 Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem
Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

- Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
- Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

- Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
- Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$

We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

CDividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$

- Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$

We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, ${ }^{-T h e}$ Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

Dividing we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

D Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

CDivding we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$
Which means that: $Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2)(x-1)$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Dividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

CDividing we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$
Which means that: $Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2)(x-1)$
Finally, we brought this back to get $P(x)$ in factored form:

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

CDividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

- Dividing we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$

Which means that: $Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2)(x-1)$
Finally, we brought this back to get $P(x)$ in factored form:
$P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) \underbrace{(x-1)(x+2)(x-1)}_{Q(x)}$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

CDividing we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

CDivding we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$
Which means that: $Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2)(x-1)$
Finally, we brought this back to get $P(x)$ in factored form:

$$
\begin{gathered}
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) \underbrace{(x-1)(x+2)(x-1)}_{Q(x)} \\
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)^{3}(x+2)^{2}
\end{gathered}
$$

Finding Roots of Polynomials - Example 3 - Recap

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
We found the roots $x=1,-2$ of $P(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $P(x)$, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

CDividins we found $Q(x)=\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}=x^{3}-3 x+2$
Using The ZPP we see $P(x)=0$ also when $Q(x)=x^{3}-3 x+2=0$
We found the roots $x=1,-2$ of $Q(x)$ using the Rational Root Theorem Since $x=1,-2$ are roots of $Q(x)$, © The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

CDivding we found $M(x)=\frac{x^{3}-3 x+2}{(x-1)(x+2)}=x-1$
Which means that: $Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2)(x-1)$
Finally, we brought this back to get $P(x)$ in factored form:

$$
\begin{gathered}
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) \underbrace{(x-1)(x+2)(x-1)}_{Q(x)} \\
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)^{3}(x+2)^{2}
\end{gathered}
$$

Conclusion:
The roots of $P(x)$ are 1 of multiplicity 3 and -2 of multiplicity 2

