Finding Roots of Polynomials - Example 3 - Recap Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$

We found the roots x = 1, -2 of P(x) using the Rational Root Theorem

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us:

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the • Rational Root Theorem Since x = 1, -2 are roots of P(x), • The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x - 1)(x + 2)} = x^3 - 3x + 2$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ \checkmark Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x - 1)(x + 2)} = x^3 - 3x + 2$ \checkmark Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Actional Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ Prividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x - 1)(x + 2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the Rational Root Theorem

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the rational Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x - 1)(x + 2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the rational Root Theorem Since x = 1, -2 are roots of Q(x), The Factoring Theorem tells us:

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ • Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ • Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$ Which means that: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)(x - 1)$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ • Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$ Which means that: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)(x - 1)$ Finally, we brought this back to get P(x) in factored form:

Finding Roots of Polynomials - Example 3 - Recap **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$ Which means that: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)(x - 1)$ Finally, we brought this back to get P(x) in factored form: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x - 1)(x + 2)(x - 1)$

Q(x)

Finding Roots of Polynomials - Example 3 - Recap **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$ Which means that: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)(x - 1)$ Finally, we brought this back to get P(x) in factored form: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x - 1)(x + 2)(x - 1)$ Q(x)

 $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)^3 (x + 2)^2$

Finding Roots of Polynomials - Example 3 - Recap **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ We found the roots x = 1, -2 of P(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of P(x), \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ • Dividing we found $Q(x) = \frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)} = x^3 - 3x + 2$ Using The ZPP we see P(x) = 0 also when $Q(x) = x^3 - 3x + 2 = 0$ We found the roots x = 1, -2 of Q(x) using the \checkmark Rational Root Theorem Since x = 1, -2 are roots of Q(x), The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ Dividing we found $M(x) = \frac{x^3 - 3x + 2}{(x-1)(x+2)} = x - 1$ Which means that: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)(x - 1)$ Finally, we brought this back to get P(x) in factored form: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x - 1)(x + 2)(x - 1)$ Q(x) $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)^3(x + 2)^2$

Conclusion:

The roots of P(x) are 1 of multiplicity 3 and -2 of multiplicity 2