Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$

Rational Root Theorem: If $\frac{p}{a}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the **Rational Root Theorem** For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that *p* divides -4 and *q* divides 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of $p: \pm 1, \pm 2, \pm 4$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ To find rational roots, we use the rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of $p: \pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of p: $\pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$:

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of p: $\pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of p: $\pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of p: $\pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$

Rational Root Theorem: If $\frac{p}{a}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = -4$ and $a_5 = 1$ This means that p divides -4 and q divides 1 Possible values of p: $\pm 1, \pm 2, \pm 4$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots.

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to:

 $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$

We need to evaluate P(x) at our possible roots, to see which are roots.

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) P(2) P(4)P(-1) P(-2) P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 P(2) P(4)P(-1) P(-2) P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 P(2) P(4) $P(-1) = -8 \neq 0$ P(-2) P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ P(4) $P(-1) = -8 \neq 0$ P(-2) P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ P(4) $P(-1) = -8 \neq 0$ P(-2) = 0 P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 P(-4)

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$

So, the only solutions we found are: x = 1, -2

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$

So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions?

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us:

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ P(1) = 0 $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)Q(x)$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5+x^4-5x^3-x^2+8x-4}{(x-1)(x+2)}$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$ So. $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$ So, $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the Zero-Product Property : $(x-1) = 0 \text{ OR } (x+2) = 0 \text{ OR } (x^3 - 3x + 2) = 0$

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$ So, $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the Zero-Product Property : (x - 1) = 0 OR (x+2) = 0 OR $(x^3 - 3x + 2) = 0$ The first two equations lead to the roots we already found: x = 1, -2

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(4) = 972 \neq 0$ P(1) = 0 $P(2) = 16 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$ So, $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the Zero-Product Property : (x - 1) = 0 OR (x+2) = 0 OR $(x^3 - 3x + 2) = 0$ The first two equations lead to the roots we already found: x = 1, -2How do we solve $(x^3 - 3x + 2) = 0$?

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ In other words, find the solutions to: $x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 16 \neq 0$ $P(4) = 972 \neq 0$ $P(-1) = -8 \neq 0$ P(-2) = 0 $P(-4) = -500 \neq 0$ So, the only solutions we found are: x = 1, -2We should have 5 solutions, what are the other solutions? Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)Q(x)$ To find Q(x) we read to compute $\frac{x^5 + x^4 - 5x^3 - x^2 + 8x - 4}{(x-1)(x+2)}$: $Q(x) = x^3 - 3x + 2$ So, $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the Zero-Product Property : (x - 1) = 0 OR (x+2) = 0 OR $(x^3 - 3x + 2) = 0$ The first two equations lead to the roots we already found: x = 1, -2How do we solve $(x^3 - 3x + 2) = 0$? Like the original equation, we use the Rational Root Theorem

Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem

Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$

Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x+2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) Q(-1)Q(-2) Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x+2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 Q(-1)Q(-2) Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{P}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(-1) = 4 \neq 0$ Q(-2) Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{P}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(-1) = 4 \neq 0$ Q(-2) Finding Roots of Polynomials - Example 3 Example: Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x - 1) = 0, (x + 2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the • Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{P}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(-1) = 4 \neq 0$ Q(-2) = 0 Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0

So, we found that x = 1, -2 are roots of Q(x)

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^5 + x^4 - 5x^3 - x^2 + 8x - 4 = (x - 1)(x + 2)(x^3 - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ Q(-2) = 0 $Q(-1) = 4 \neq 0$ So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)}$

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$ Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the \checkmark Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$ Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = x^3 - 3x + 2 = (x - 1)(x + 2)(x - 1)$

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$ Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = x^3 - 3x + 2 = (x - 1)(x + 2)(x - 1)$ Bringing this back to our original polynomial P(x) we have:

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the \checkmark Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. Q(1) = 0 $Q(2) = 4 \neq 0$ $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$ Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = x^3 - 3x + 2 = (x - 1)(x + 2)(x - 1)$ Bringing this back to our original polynomial P(x) we have: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x - 1)(x + 2)(x - 1)$ Q(x)

Finding Roots of Polynomials - Example 3 **Example:** Find the roots of $P(x) = x^5 + x^4 - 5x^3 - x^2 + 8x - 4$ $0 = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x^{3} - 3x + 2)$ • By the ZPP: (x-1) = 0, (x+2) = 0, OR $Q(x) = (x^3 - 3x + 2) = 0$ We need to solve $Q(x) = (x^3 - 3x + 2) = 0$ using the \checkmark Rational Root Theorem Possible values of p: $\pm 1, \pm 2$; Possible values of q: ± 1 Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate Q(x) at our possible roots, to see which are roots. $Q(2) = 4 \neq 0$ Q(1) = 0 $Q(-1) = 4 \neq 0$ Q(-2) = 0So, we found that x = 1, -2 are roots of Q(x)Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = (x^3 - 3x + 2) = (x - 1)(x + 2)M(x)$ And we can find M(x) by computing $\frac{(x^3-3x+2)}{(x-1)(x+2)} = x-1$ Since x = 1, -2 are roots, \checkmark The Factoring Theorem tells us: $Q(x) = x^3 - 3x + 2 = (x - 1)(x + 2)(x - 1)$ Bringing this back to our original polynomial P(x) we have: $P(x) = x^{5} + x^{4} - 5x^{3} - x^{2} + 8x - 4 = (x - 1)(x + 2)(x - 1)(x + 2)(x - 1)$ So, the roots of P(x) are 1 of multiplicity 3 and -2 of multiplicity 2