Finding Roots of Polynomials - Example 3

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$:

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the \mathbb{R} Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the \mathbb{R} Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$

Finding Roots of Polynomials - Example 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
To find rational roots, we use the \mathbb{R} Rational Root Theorem
For $P(x)$, we have $a_{0}=-4$ and $a_{5}=1$
This means that p divides -4 and q divides 1
Possible values of $p: \pm 1, \pm 2, \pm 4$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 3

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)$
$P(2)$
$P(-1)$
$P(-2)$
$P(4)$

$$
P(-4)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)$
$P(-1)$
$P(-2)$
$P(4)$

$$
P(-4)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2) \tag{4}\\
P(-1)=-8 \neq 0 & P(-2)
\end{array}
$$

$$
P(-4)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)$
$P(-1)=-8 \neq 0$
$P(-2)$
$P(-4)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)$
$P(-1)=-8 \neq 0$
$P(-2)=0$
$P(-4)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0$
$P(-2)=0$
$P(-4)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(-1)=-8 \neq 0$
$P(-2)=0$
$P(4)=972 \neq 0$
$P(-4)=-500 \neq 0$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0$
$P(-4)=-500 \neq 0$

So, the only solutions we found are: $x=1,-2$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$

$$
P(4)=972 \neq 0
$$

$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0$
$P(4)=972 \neq 0$

$$
P(-4)=-500 \neq 0
$$

So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$

$$
P(2)=16 \neq 0
$$

$$
P(4)=972 \neq 0
$$

$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
P(1)=0
$$

$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$

$$
P(2)=16 \neq 0
$$

$$
P(4)=972 \neq 0
$$

$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$
So, $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
P(1)=0
$$

$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$ So, $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
Byy the Zero Product Property: $(x-1)=0 \mathrm{OR}(x+2)=0 \mathrm{OR}\left(x^{3}-3 x+2\right)=0$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
P(1)=0
$$

$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$
So, $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
B By the Zero Product Property: $(x-1)=0 \mathrm{OR}(x+2)=0 \mathrm{OR}\left(x^{3}-3 x+2\right)=0$
The first two equations lead to the roots we already found: $x=1,-2$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$ So, $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$

- By the Zero-Product Property) : $(x-1)=0$ OR $(x+2)=0$ OR $\left(x^{3}-3 x+2\right)=0$

The first two equations lead to the roots we already found: $x=1,-2$ How do we solve $\left(x^{3}-3 x+2\right)=0$?

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ In other words, find the solutions to:
$x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=0$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{4}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P(2)=16 \neq 0$
$P(4)=972 \neq 0$
$P(-1)=-8 \neq 0 \quad P(-2)=0 \quad P(-4)=-500 \neq 0$
So, the only solutions we found are: $x=1,-2$
We should have 5 solutions, what are the other solutions?
Since $x=1,-2$ are roots, ©The Factoring Theorem tells us:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4}{(x-1)(x+2)}: Q(x)=x^{3}-3 x+2$ So, $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$

- By the Zero-Product Property) : $(x-1)=0$ OR $(x+2)=0 \mathrm{OR}\left(x^{3}-3 x+2\right)=0$

The first two equations lead to the roots we already found: $x=1,-2$ How do we solve $\left(x^{3}-3 x+2\right)=0$?
Like the original equation, we use the

Finding Roots of Polynomials - Example 3

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
© By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$ $0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
Byy the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
Byy the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
Byy the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)$
$Q(-1)$
$Q(2)$
$Q(-2)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{align*}
& Q(1)=0 \tag{2}\\
& Q(-1)
\end{align*}
$$

$$
Q(-2)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{align*}
& Q(1)=0 \tag{2}\\
& Q(-1)=4 \neq 0 \tag{-2}
\end{align*}
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{aligned}
& Q(1)=0 \\
& Q(-1)=4 \neq 0
\end{aligned}
$$

$Q(2)=4 \neq 0$
$Q(-2)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)=0$
$Q(2)=4 \neq 0$
$Q(-1)=4 \neq 0$

$$
Q(-2)=0
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, ${ }^{\text {The Factoring Theorem }}$ tells us:

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$ Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$ Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
Q(1)=0 & Q(2)=4 \neq 0 \\
Q(-1)=4 \neq 0 & Q(-2)=0
\end{array}
$$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)=0$
$Q(2)=4 \neq 0$
$Q(-1)=4 \neq 0$
$Q(-2)=0$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=x^{3}-3 x+2=(x-1)(x+2)(x-1)
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)=0$
$Q(2)=4 \neq 0$
$Q(-1)=4 \neq 0$
$Q(-2)=0$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=x^{3}-3 x+2=(x-1)(x+2)(x-1)
$$

Bringing this back to our original polynomial $P(x)$ we have:

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)=0$
$Q(2)=4 \neq 0$
$Q(-1)=4 \neq 0$
$Q(-2)=0$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computing $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=x^{3}-3 x+2=(x-1)(x+2)(x-1)
$$

Bringing this back to our original polynomial $P(x)$ we have:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) \underbrace{(x-1)(x+2)(x-1)}_{Q(x)}
$$

Finding Roots of Polynomials - Example 3

Example: Find the roots of $P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4$
$0=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2)\left(x^{3}-3 x+2\right)$
By the ZPP: $(x-1)=0,(x+2)=0$, OR $Q(x)=\left(x^{3}-3 x+2\right)=0$
We need to solve $Q(x)=\left(x^{3}-3 x+2\right)=0$ using the Rational Root Theorem
Possible values of $p: \pm 1, \pm 2$; Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $Q(x)$ at our possible roots, to see which are roots.
$Q(1)=0$
$Q(2)=4 \neq 0$
$Q(-1)=4 \neq 0$
$Q(-2)=0$

So, we found that $x=1,-2$ are roots of $Q(x)$
Since $x=1,-2$ are roots, The Factoing Theorem tells us:

$$
Q(x)=\left(x^{3}-3 x+2\right)=(x-1)(x+2) M(x)
$$

And we can find $M(x)$ by computings $\frac{\left(x^{3}-3 x+2\right)}{(x-1)(x+2)}=x-1$
Since $x=1,-2$ are roots, The Factoring Theorem tells us:

$$
Q(x)=x^{3}-3 x+2=(x-1)(x+2)(x-1)
$$

Bringing this back to our original polynomial $P(x)$ we have:

$$
P(x)=x^{5}+x^{4}-5 x^{3}-x^{2}+8 x-4=(x-1)(x+2) \underbrace{(x-1)(x+2)(x-1)}
$$

So, the roots of $P(x)$ are 1 of multiplicity 3 and -2 of multiplicity 2

