Long Division of Polynomials - Example 2

Long Division of Polynomials - Example 2

Now that we have seen how to Ade and slutract and
Mutbily Polynomials, we can solve examples of Dividing Polynomials

Long Division of Polynomials - Example 2

Now that we have seen how to Add and slutrate and
Mitriviv Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \longdiv { x ^ { 3 } - x ^ { 2 } - 2 x + 2 }
$$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x - 1 \longdiv { x ^ { 3 } - x ^ { 2 } - 2 x + 2 }
$$

First we divide the lead terms:

$$
\frac{x^{3}}{x}=x^{2}
$$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{gathered}
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2} \\
-x^{3}+x^{2}
\end{gathered}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{array}{r}
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2} \\
\frac{-x^{3}+x^{2}}{-2 x+2}
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{array}{r}
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2} \\
-x^{3}+x^{2} \\
-2 x+2
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{array}{r}
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2} \\
\frac{-x^{3}+x^{2}}{}-2 x+2
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{array}{r}
x-1) \frac{x^{2}}{x^{3}-x^{2}-2 x+2} \\
\frac{-x^{3}+x^{2}}{}-2 x+2
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-2 x}{x}=-2$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
\begin{array}{r}
x-1) \begin{array}{r}
x^{2}-2 \\
x^{3}-x^{2}-2 x+2 \\
-x^{3}+x^{2} \\
-2 x+2
\end{array}
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-2 x}{x}=-2$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \begin{array}{r}
x^{2} \quad-2 \\
\frac{x^{3}-x^{2}-2 x+2}{} \\
-x^{3}+x^{2} \\
-2 x+2 \\
-\quad 2 x-2
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-2 x}{x}=-2$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \begin{array}{r}
x^{2}-2 \\
x^{3}-x^{2}-2 x+2 \\
-x^{3}+x^{2} \\
-2 x+2 \\
-2 x-2
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-2 x}{x}=-2$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \begin{array}{r}
x^{2}-2 \\
x^{3}-x^{2}-2 x+2 \\
-x^{3}+x^{2} \\
-2 x+2 \\
-\quad 2 x-2 \\
0
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-2 x}{x}=-2$
The remainder is 0 because $x=1$ is a root of $x^{3}-x^{2}-2 x+2$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \begin{array}{r}
x^{2}-2 \\
x^{3}-x^{2}-2 x+2 \\
-x^{3}+x^{2} \\
-2 x+2 \\
-\quad 2 x-2 \\
0
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:

$$
\frac{-2 x}{x}=-2
$$

The remainder is 0 because $x=1$ is a root of $x^{3}-x^{2}-2 x+2$
Conclusion:

$$
\frac{x^{3}-x^{2}-2 x+2}{x-1}=x^{2}-2
$$

Long Division of Polynomials - Example 2

Now that we have seen how to Add and Subtract and

- Multiply Polynomials, we can solve examples of Dividing Polynomials
We will follow a similar algorithm as Long Division of numbers
Example 2: Simplify $\frac{x^{3}-x^{2}-2 x+2}{x-1}$

$$
x-1) \begin{array}{r}
x^{2}-2 \\
x^{3}-x^{2}-2 x+2 \\
-x^{3}+x^{2} \\
-2 x+2 \\
-\quad 2 x-2 \\
0
\end{array}
$$

First we divide the lead terms:
$\frac{x^{3}}{x}=x^{2}$
Next we multiply $x^{2} \cdot(x-1)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:

$$
\frac{-2 x}{x}=-2
$$

The remainder is 0 because $x=1$ is a root of $x^{3}-x^{2}-2 x+2$
Conclusion:

$$
\frac{x^{3}-x^{2}-2 x+2}{x-1}=x^{2}-2
$$

Alternatively:

$$
x^{3}-x^{2}-2 x+2=(x-1) \cdot\left(x^{2}-2\right)
$$

