Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

To find rational roots, we use the • Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

To find rational roots, we use the Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

To find rational roots, we use the • Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that p divides 2 and q divides 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$

To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that p divides 2 and q divides 1 Possible values of $p: \pm 1, \pm 2$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ To find rational roots, we use the • Rational Root Theorem For P(x) we have $a_n = 2$ and $a_n = 1$

To find rational roots, we use the \bigcirc Rational Root For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that p divides 2 and q divides 1 Possible values of $p: \pm 1, \pm 2$

Possible values of $q: \pm 1$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that p divides 2 and q divides 1 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$:

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ To find rational roots, we use the rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that *p* divides 2 and *q* divides 1 Possible values of *p*: $\pm 1, \pm 2$ Possible values of *q*: ± 1

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that *p* divides 2 and *q* divides 1 Possible values of *p*: $\pm 1, \pm 2$ Pageible values of *p*: $\pm 1, \pm 2$

Possible values of $q: \pm 1$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 1$ This means that p divides 2 and q divides 1 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots.

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $\begin{array}{c}P(1) & P(2)\\P(-1) & P(-2)\end{array}$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

$$P(1) = 0$$
 $P(2)$
 $P(-1)$ $P(-2)$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{a}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

$$P(1) = 0$$
 $P(2)$
 $P(-1) = 2 \neq 0$
 $P(-2)$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

$$P(1) = 0$$
 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2)$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

$$P(1) = 0$$
 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $\begin{aligned} x^3 - x^2 - 2x + 2 &= 0\\ \text{Possible values of roots } \frac{P}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}\\ \text{We need to evaluate } P(x) \text{ at our possible roots, to see which are roots.}\\ P(1) &= 0 \qquad \qquad P(2) = 2 \neq 0\\ P(-1) &= 2 \neq 0 \qquad \qquad P(-2) = -6 \neq 0 \end{aligned}$

So, the only solution we found was: x = 1

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $\begin{aligned} x^3 - x^2 - 2x + 2 &= 0\\ \text{Possible values of roots } \frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}\\ \text{We need to evaluate } P(x) \text{ at our possible roots, to see which are roots.}\\ P(1) &= 0 \qquad \qquad P(2) = 2 \neq 0\\ P(-1) &= 2 \neq 0 \qquad \qquad P(-2) = -6 \neq 0 \end{aligned}$

So, the only solution we found was: x = 1What are the other solutions?

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{P}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(1) = 0 \qquad \qquad P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0 \qquad \qquad P(-2) = -6 \neq 0$ So, the only solution we found was: x = 1

What are the other solutions?

Since x = 1 is a root, \bullet The Factoring Theorem tells us:

 $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \bullet The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$

To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \checkmark The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we \checkmark need to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)}$: $Q(x) = x^2 - 2$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)^2}$: $Q(x) = x^2 - 2$

So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ Public Vertices of the second se

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ Public Vertices of the second se

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ Public Vertices of the second se

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x - 1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ Public Zero-Product Property (x - 1) = 0

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ results the Zero-Product Property (x - 1) = 0 $(x^2 - 2) = 0$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^3 - x^2 - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-2) = -6 \neq 0$ $P(-1) = 2 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \checkmark The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3-x^2-2x+2}{(x-1)}$: $Q(x) = x^2 - 2$ So. $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ (x-1)=0 $(x^2 - 2) = 0$

x = 1 is the root we knew

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to:

 $x^{3} - x^{2} - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$

- We need to evaluate P(x) at our possible roots, to see which are roots.
 - P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$

So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$: $Q(x) = x^2 - 2$ So, $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ Public Zero-Product Property (x - 1) = 0 $(x^2 - 2) = 0$ x = 1 is the root we knew We can solve this to find:

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 2 \neq 0$ $P(-2) = -6 \neq 0$ $P(-1) = 2 \neq 0$ So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \checkmark The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$: $Q(x) = x^2 - 2$ So. $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ By the Zero-Product Property (x-1)=0 $(x^2 - 2) = 0$ x = 1 is the root we knew • We can solve) this to find: $x = \pm \sqrt{2}$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. P(1) = 0 $P(2) = 2 \neq 0$ $P(-1) = 2 \neq 0$ $P(-2) = -6 \neq 0$ So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \checkmark The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$: $Q(x) = x^2 - 2$ So. $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ By the Zero-Product Property (x-1)=0 $(x^2 - 2) = 0$ x = 1 is the root we knew • We can solve this to find: $x = \pm \sqrt{2}$ **Conc:** The roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ are: $x = 1, \sqrt{2}, -\sqrt{2}$

Example: Find the roots of $P(x) = x^3 - x^2 - 2x + 2$ In other words, find the solutions to: $x^3 - x^2 - 2x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$ We need to evaluate P(x) at our possible roots, to see which are roots. $P(2) = 2 \neq 0$ P(1) = 0 $P(-2) = -6 \neq 0$ $P(-1) = 2 \neq 0$ So, the only solution we found was: x = 1What are the other solutions? Since x = 1 is a root, \checkmark The Factoring Theorem tells us: $P(x) = x^3 - x^2 - 2x + 2 = (x - 1)Q(x)$ To find Q(x) we read to compute $\frac{x^3 - x^2 - 2x + 2}{(x-1)}$: $Q(x) = x^2 - 2$ So. $0 = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2)$ By the Zero-Product Property (x-1) = 0 $(x^2 - 2) = 0$ x = 1 is the root we knew • We can solve this to find: $x=\pm\sqrt{2}$ **Conc:** The roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ are: $x = 1, \sqrt{2}, -\sqrt{2}$ Note: The RRT did not find the roots $\pm \sqrt{2}$ since they are not rational.