Finding Roots of Polynomials - Example 2

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1$

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$
Possible values of q : ± 1
Possible values of roots $\frac{p}{q}$:

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}$

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{2}{1}$

Finding Roots of Polynomials - Example 2

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=1$
This means that p divides 2 and q divides 1
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 2

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{aligned}
& P(1) \\
& P(-1)
\end{aligned}
$$

$P(2)$
$P(-2)$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{align*}
& P(1)=0 \tag{2}\\
& P(-1)
\end{align*}
$$

$P(-2)$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{align*}
& P(1)=0 \tag{2}\\
& P(-1)=2 \neq 0
\end{align*}
$$

$P(-2)$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{aligned}
& P(1)=0 \\
& P(-1)=2 \neq 0
\end{aligned}
$$

$$
P(2)=2 \neq 0
$$

$$
P(-2)
$$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$
, By the Zero-Product Property

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$
, By the Zero-Product Property

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$
, By the Zero-Product Property

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$

$$
\left(x^{2}-2\right)=0
$$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, © The Factoing Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$

$$
\left(x^{2}-2\right)=0
$$

$x=1$ is the root we knew

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$
$x=1$ is the root we knew
$\left(x^{2}-2\right)=0$
we can solve this to find:

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$
$x=1$ is the root we knew
$\left(x^{2}-2\right)=0$
We can solve this to find: $x= \pm \sqrt{2}$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, ©The Facions Theorm tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0 \quad\left(x^{2}-2\right)=0$
$x=1$ is the root we knew We can solve this to find: $x= \pm \sqrt{2}$
Conc: The roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$ are: $x=1, \sqrt{2},-\sqrt{2}$

Finding Roots of Polynomials - Example 2

Example: Find the roots of $P(x)=x^{3}-x^{2}-2 x+2$
In other words, find the solutions to:

$$
x^{3}-x^{2}-2 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{2}{1}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

$$
\begin{array}{ll}
P(1)=0 & P(2)=2 \neq 0 \\
P(-1)=2 \neq 0 & P(-2)=-6 \neq 0
\end{array}
$$

So, the only solution we found was: $x=1$
What are the other solutions?
Since $x=1$ is a root, The Factoring Theorem tells us:

$$
P(x)=x^{3}-x^{2}-2 x+2=(x-1) Q(x)
$$

To find $Q(x)$ we need to compute $\frac{x^{3}-x^{2}-2 x+2}{(x-1)}: Q(x)=x^{2}-2$
So, $0=x^{3}-x^{2}-2 x+2=(x-1)\left(x^{2}-2\right)$

- By the Zero-Product Property
$(x-1)=0$
$\left(x^{2}-2\right)=0$
$x=1$ is the root we knew
- We can solve this to find: $x= \pm \sqrt{2}$

Conc: The roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$ are: $x=1, \sqrt{2},-\sqrt{2}$
Note: The RRT did not find the roots $\pm \sqrt{2}$ since they are not rational.

