Finding Roots of Polynomials - Example 1

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$:

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

Finding Roots of Polynomials - Example 1

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

then p divides a_{0} and q divides a_{n}
Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

To find rational roots, we use the Rational Root Theorem
For $P(x)$, we have $a_{0}=2$ and $a_{3}=3$
This means that p divides 2 and q divides 3
Possible values of $p: \pm 1, \pm 2$
Possible values of $q: \pm 1, \pm 3$
Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 1

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$ In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)$
$P(-1)$
$P\left(\frac{1}{3}\right)$

$$
\begin{aligned}
& P\left(\frac{-1}{3}\right) \\
& P(2) \\
& P(-2)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(\frac{2}{3}\right) \\
& P\left(\frac{-2}{3}\right)
\end{aligned}
$$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)$
$P\left(\frac{2}{3}\right)$
$P(-1)$
$P\left(\frac{1}{3}\right)$
$P(2)$
$P(-2)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P\left(\frac{1}{3}\right)$
$P(2)$
$P(-2)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(2)$
$P(-2)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(2)$
$P(-2)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)=0$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)=0$
$P\left(\frac{-2}{3}\right)$

- The FTA tells us that $P(x)$ has 3 roots because $\operatorname{deg}(P)=3$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right)$
$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)=0$
$P\left(\frac{-2}{3}\right)$
ctie FIA tells us that $P(x)$ has 3 roots because $\operatorname{deg}(P)=3$
So, we know that these three roots are the only three roots of $P(x)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$
$P\left(\frac{2}{3}\right) \neq 0$
$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{-2}{3}\right) \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)=0$

The FTAA tells us that $P(x)$ has 3 roots because $\operatorname{deg}(P)=3$
So, we know that these three roots are the only three roots of $P(x)$

Finding Roots of Polynomials - Example 1

Example: Find the roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$
In other words, find the solutions to:

$$
3 x^{3}+2 x^{2}-7 x+2=0
$$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$
We need to evaluate $P(x)$ at our possible roots, to see which are roots.
$P(1)=0$
$P\left(\frac{-1}{3}\right)=\frac{40}{9} \neq 0$

$$
P\left(\frac{2}{3}\right) \neq 0
$$

$P(-1)=8 \neq 0$
$P(2)=20 \neq 0$
$P\left(\frac{-2}{3}\right) \neq 0$
$P\left(\frac{1}{3}\right)=0$
$P(-2)=0$

- The FTA tells us that $P(x)$ has 3 roots because $\operatorname{deg}(P)=3$

So, we know that these three roots are the only three roots of $P(x)$
Conclusion: The roots of $P(x)=3 x^{3}+2 x^{2}-7 x+2$ are: $x=-2,1, \frac{1}{3}$

