Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$

To find rational roots, we use the • Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$

To find rational roots, we use the Rational Root Theorem

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$

To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$

To find rational roots, we use the • Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that p divides 2 and q divides 3

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$

This means that p divides 2 and q divides 3 Possible values of $p: \pm 1, \pm 2$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that *p* divides 2 and *q* divides 3 Possible values of *p*: $\pm 1, \pm 2$

Possible values of $q: \pm 1, \pm 3$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then p divides a_0 and q divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that p divides 2 and q divides 3 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1, \pm 3$ Possible values of roots $\frac{p}{q}$:

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the • Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that *p* divides 2 and *q* divides 3

Possible values of $p: \pm 1, \pm 2$

Possible values of $q: \pm 1, \pm 3$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that p divides 2 and q divides 3 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1, \pm 3$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that p divides 2 and q divides 3 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1, \pm 3$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem

For P(x), we have $a_0 = 2$ and $a_3 = 3$

This means that *p* divides 2 and *q* divides 3 Possible values of *p*: $\pm 1, \pm 2$

Possible values of $q: \pm 1, \pm 3$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$ To find rational roots, we use the Rational Root Theorem

For P(x), we have $a_0 = 2$ and $a_3 = 3$

This means that *p* divides 2 and *q* divides 3 Possible values of *p*: $\pm 1, \pm 2$

Possible values of $q: \pm 1, \pm 3$

Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

Rational Root Theorem: If $\frac{p}{q}$ is a root of

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

then *p* divides a_0 and *q* divides a_n **Example:** Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to: $3x^3 + 2x^2 - 7x + 2 = 0$

To find rational roots, we use the Rational Root Theorem For P(x), we have $a_0 = 2$ and $a_3 = 3$ This means that p divides 2 and q divides 3 Possible values of $p: \pm 1, \pm 2$ Possible values of $q: \pm 1, \pm 3$ Possible values of roots $\frac{p}{q}: \pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$ We need to evaluate P(x) at our possible roots, to see which are roots.

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1)$$
 $P(\frac{-1}{3})$
 $P(\frac{2}{3})$
 $P(-1)$
 $P(2)$
 $P(\frac{-2}{3})$
 $P(\frac{1}{3})$
 $P(-2)$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0$$
 $P(\frac{-1}{3})$
 $P(\frac{2}{3})$
 $P(-1)$
 $P(2)$
 $P(\frac{-2}{3})$
 $P(\frac{1}{3})$
 $P(-2)$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0$$
 $P(\frac{-1}{3})$
 $P(\frac{2}{3})$
 $P(-1) = 8 \neq 0$
 $P(2)$
 $P(\frac{-2}{3})$
 $P(\frac{1}{3})$
 $P(-2)$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0 \qquad P(\frac{-1}{3}) \qquad P(\frac{2}{3}) \\ P(-1) = 8 \neq 0 \qquad P(2) \qquad P(\frac{-2}{3}) \\ P(\frac{1}{3}) = 0 \qquad P(-2)$$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0 \qquad P(\frac{-1}{3}) = \frac{40}{9} \neq 0 \qquad P(\frac{2}{3}) \\ P(-1) = 8 \neq 0 \qquad P(2) \qquad P(\frac{-2}{3}) \\ P(\frac{1}{3}) = 0 \qquad P(-2)$$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0 \qquad P(\frac{-1}{3}) = \frac{40}{9} \neq 0 \qquad P(\frac{2}{3}) \\ P(-1) = 8 \neq 0 \qquad P(2) = 20 \neq 0 \qquad P(\frac{-2}{3}) \\ P(\frac{1}{3}) = 0 \qquad P(-2)$$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

$$P(1) = 0 \qquad P(\frac{-1}{3}) = \frac{40}{9} \neq 0 \qquad P(\frac{2}{3}) \\ P(-1) = 8 \neq 0 \qquad P(2) = 20 \neq 0 \qquad P(\frac{-2}{3}) \\ P(\frac{1}{3}) = 0 \qquad P(-2) = 0$$

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

We need to evaluate P(x) at our possible roots, to see which are roots.

P(1) = 0 $P(\frac{-1}{3}) = \frac{40}{9} \neq 0$ $P(\frac{2}{3})$ $P(-1) = 8 \neq 0$ $P(2) = 20 \neq 0$ $P(\frac{-2}{3})$ $P(\frac{1}{3}) = 0$ P(-2) = 0

• The FTA tells us that P(x) has 3 roots because deg(P) = 3

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

We need to evaluate P(x) at our possible roots, to see which are roots.

$$P(1) = 0 \qquad P(\frac{-1}{3}) = \frac{40}{9} \neq 0 \qquad P(\frac{2}{3}) \\ P(-1) = 8 \neq 0 \qquad P(2) = 20 \neq 0 \qquad P(\frac{-2}{3}) \\ P(\frac{1}{3}) = 0 \qquad P(-2) = 0$$

• The FTA tells us that P(x) has 3 roots because deg(P) = 3

So, we know that these three roots are the only three roots of P(x)

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

We need to evaluate P(x) at our possible roots, to see which are roots.

$$P(1) = 0$$
 $P(\frac{-1}{3}) = \frac{40}{9} \neq 0$ $P(\frac{2}{3}) \neq 0$ $P(-1) = 8 \neq 0$ $P(2) = 20 \neq 0$ $P(\frac{-2}{3}) \neq 0$ $P(\frac{1}{3}) = 0$ $P(-2) = 0$

• The FTA tells us that P(x) has 3 roots because deg(P) = 3

So, we know that these three roots are the only three roots of P(x)

Example: Find the roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ In other words, find the solutions to:

 $3x^{3} + 2x^{2} - 7x + 2 = 0$ Possible values of roots $\frac{p}{q}$: $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}$

We need to evaluate P(x) at our possible roots, to see which are roots.

$$P(1) = 0$$
 $P(\frac{-1}{3}) = \frac{40}{9} \neq 0$ $P(\frac{2}{3}) \neq 0$ $P(-1) = 8 \neq 0$ $P(2) = 20 \neq 0$ $P(\frac{-2}{3}) \neq 0$ $P(\frac{1}{3}) = 0$ $P(-2) = 0$

• The FTA tells us that P(x) has 3 roots because deg(P) = 3So, we know that these three roots are the only three roots of P(x)

Conclusion: The roots of $P(x) = 3x^3 + 2x^2 - 7x + 2$ are: $x = -2, 1, \frac{1}{3}$