Long Division of Polynomials - Conclusions

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers.

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor).

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

$$
D(x) \cdot \frac{P(x)}{D(x)}=D(x) \cdot\left(Q(x)+\frac{R(x)}{D(x)}\right)
$$

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor). In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

$$
P(x)=D(x) \cdot \frac{P(x)}{D(x)}=D(x) \cdot\left(Q(x)+\frac{R(x)}{D(x)}\right)
$$

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor).
In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

$$
\begin{aligned}
P(x)=D(x) \cdot \frac{P(x)}{D(x)} & =D(x) \cdot\left(Q(x)+\frac{R(x)}{D(x)}\right) \\
& =D(x) \cdot Q(x)+D(x) \cdot \frac{R(x)}{D(x)}
\end{aligned}
$$

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor).
In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

$$
\begin{aligned}
P(x)=D(x) \cdot \frac{P(x)}{D(x)} & =D(x) \cdot\left(Q(x)+\frac{R(x)}{D(x)}\right) \\
& =D(x) \cdot Q(x)+D(x) \cdot \frac{R(x)}{D(x)} \\
& =D(x) \cdot Q(x)+R(x)
\end{aligned}
$$

Long Division of Polynomials - Conclusions

- We have seen how dividing polynomials is like long division of numbers. We stop the process when the degree of our Remainder is less than the degree of the polynomial we are dividing by (called the Divisor).
In other words, when we divide $\frac{P(x)}{D(x)}$ we get:

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

Where the $\operatorname{degree}(R)<\operatorname{degree}(D)$
It is sometimes useful to write this in a form without fractions.
We can eliminate the fractions by Multiplying by $D(x)$ on both sides:

$$
\begin{aligned}
P(x)=D(x) \cdot \frac{P(x)}{D(x)} & =D(x) \cdot\left(Q(x)+\frac{R(x)}{D(x)}\right) \\
& =D(x) \cdot Q(x)+D(x) \cdot \frac{R(x)}{D(x)} \\
& =D(x) \cdot Q(x)+R(x)
\end{aligned}
$$

So, if $\frac{P(x)}{D(x)}$ is $Q(x)$ with a remainder of $R(x)$ then:

$$
P(x)=D(x) \cdot Q(x)+R(x)
$$

Long Division of Polynomials - Conclusion

Long Division of Polynomials - Conclusion

$\rightarrow \ln$ Example 1 we computed $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

Long Division of Polynomials - Conclusion

$\rightarrow \operatorname{In}$ Example 1 we computed $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \begin{array}{r}
2 x-3 \\
\begin{array}{r}
2 x^{3}-3 x^{2}+5 x+1 \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1 \\
-3 x^{2}-6
\end{array} \\
\hline 9 x-5
\end{array}
\end{array}
$$

Long Division of Polynomials - Conclusion

(An Example 1 we computed $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& \left.x^{2}-2\right) \frac{2 x-3}{2 x^{3}-3 x^{2}+5 x+1}
\end{aligned}
$$

From this we drew the conclusion:

$$
\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}=2 x-3+\frac{9 x-5}{x^{2}-2}
$$

Long Division of Polynomials - Conclusion

In Example 1 we computed $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& \left.x^{2}-2\right) \frac{2 x-3}{2 x^{3}-3 x^{2}+5 x+1} \\
& \begin{array}{r}
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1 \\
-\quad 3 x^{2}+6 \\
\hline 9 x-5
\end{array}
\end{aligned}
$$

From this we drew the conclusion:

$$
\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}=2 x-3+\frac{9 x-5}{x^{2}-2}
$$

Multiplying by $x^{2}-2$ on both sides gives our alternate conclusion:

Long Division of Polynomials - Conclusion

- In Example 1 we computed $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \begin{array}{r}
2 x-3 \\
\hline 2 x^{3}-3 x^{2}+5 x+1 \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1 \\
-3 x^{2}-6 \\
9 x-5
\end{array}
\end{array}
$$

From this we drew the conclusion:

$$
\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}=2 x-3+\frac{9 x-5}{x^{2}-2}
$$

Multiplying by $x^{2}-2$ on both sides gives our alternate conclusion:

$$
2 x^{3}-3 x^{2}+5 x+1=(2 x-3) \cdot\left(x^{2}-2\right)+9 x-5
$$

