## Long Division of Polynomials

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and
-Multiply Polynomials, we will look at an example of Dividing Polynomials

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multidy Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\left.x^{2}-2\right) \longdiv { 2 x ^ { 3 } - 3 x ^ { 2 } + 5 x + 1 }
$$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
x ^ { 2 } - 2 \longdiv { 2 x ^ { 3 } - 3 x ^ { 2 } + 5 x + 1 } \quad \frac { 2 x ^ { 3 } } { x ^ { 2 } } = 2 x
$$

First we divide the lead terms:

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{ll}
\left.\frac{2 x}{2}-2\right) & \begin{array}{l}
\text { First we d } \\
2 x^{3}-3 x^{2}+5 x+1
\end{array} \\
\frac{2 x^{3}}{x^{2}}=2 x
\end{array}
$$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\left.x^{2}-2\right) \frac{2 x}{2 x^{3}-3 x^{2}+5 x+1}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{gathered}
\left.x^{2}-2\right) \\
\begin{array}{c}
2 x^{3}-3 x^{2}+5 x+1 \\
-2 x^{3}+4 x
\end{array} \\
\hline
\end{gathered}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \\
\begin{array}{r}
\frac{2 x}{2 x^{3}-3 x^{2}+5 x+1} \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1
\end{array}
\end{array}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multidy Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \\
\begin{array}{r}
\frac{2 x}{2 x^{3}-3 x^{2}+5 x+1} \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1
\end{array}
\end{array}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract
Now we have a lower degree

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \\
\begin{array}{r}
\frac{2 x}{2 x^{3}-3 x^{2}+5 x+1} \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1
\end{array}
\end{array}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract Now we have a lower degree Now we repeat this process.

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multidy Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{array}{r}
\left.x^{2}-2\right) \\
\begin{array}{r}
\frac{2 x}{2 x^{3}-3 x^{2}+5 x+1} \\
-2 x^{3}+4 x \\
-3 x^{2}+9 x+1
\end{array}
\end{array}
$$

First we divide the lead terms:
$\frac{2 x^{3}}{x^{2}}=2 x$
Next we multiply $2 x \cdot\left(x^{2}-2\right)$ and subtract
Now we have a lower degree
Now we repeat this process.
Dividing the new lead terms:
$\frac{-3 x^{2}}{x^{2}}=-3$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multidy Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \\
\left.x^{2}-2\right) & \begin{array}{l}
\text { First we divide the lead terms: } \\
2 x^{3}-3 x^{2}+5 x+1 \\
-2 x^{3}+4 x \\
x^{2}
\end{array}=2 x \\
-3 x^{2}+9 x+1 & \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
& \text { and subtract } \\
& \text { Now we have a lower degree } \\
& \text { Now we repeat this process. } \\
& \text { Dividing the new lead terms: } \\
& \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \quad \text { First we divide the lead terms: } \\
& \left.x^{2}-2\right) \quad 2 x^{3}-3 x^{2}+5 x+1 \\
& -2 x^{3}+4 x \\
& \begin{array}{r}
-3 x^{2}+9 x+1 \\
3 x^{2}-6 \\
\hline
\end{array} \\
& \frac{2 x^{3}}{x^{2}}=2 x \\
& \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
& \text { and subtract } \\
& \text { Now we have a lower degree } \\
& \text { Now we repeat this process. } \\
& \text { Dividing the new lead terms: } \\
& \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \quad \text { First we divide the lead terms: } \\
& \left.x^{2}-2\right) \quad 2 x^{3}-3 x^{2}+5 x+1 \\
& -2 x^{3}+4 x \\
& \begin{array}{r}
-3 x^{2}+9 x+1 \\
3 x^{2}+6 \\
\hline 9 x-5
\end{array} \\
& \frac{2 x^{3}}{x^{2}}=2 x \\
& \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
& \text { and subtract } \\
& \text { Now we have a lower degree } \\
& \text { Now we repeat this process. } \\
& \text { Dividing the new lead terms: } \\
& \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \quad \text { First we divide the lead terms: } \\
& \left.x^{2}-2\right) \quad 2 x^{3}-3 x^{2}+5 x+1 \\
& -2 x^{3}+4 x \\
& \begin{array}{r}
-3 x^{2}+9 x+1 \\
3 x^{2}+6 \\
\hline 9 x-5
\end{array} \\
& \text { First we divide the lead terms: } \\
& \frac{2 x^{3}}{x^{2}}=2 x \\
& \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
& \text { and subtract } \\
& \text { Now we have a lower degree } \\
& \text { Now we repeat this process. } \\
& \text { Dividing the new lead terms: } \\
& \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

Once the degree of what is being divided is smaller than the degree we are dividing by, the process is complete:

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multiply Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \quad \text { First we divide the lead terms: } \\
& \left.x^{2}-2\right) \quad 2 x^{3}-3 x^{2}+5 x+1 \\
& -2 x^{3}+4 x \\
& \begin{array}{r}
-3 x^{2}+9 x+1 \\
3 x^{2}+6 \\
\hline 9 x-5
\end{array} \\
& \text { First we divide the lead terms: } \\
& \frac{2 x^{3}}{x^{2}}=2 x \\
& \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
& \text { and subtract } \\
& \text { Now we have a lower degree } \\
& \text { Now we repeat this process. } \\
& \text { Dividing the new lead terms: } \\
& \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

Once the degree of what is being divided is smaller than the degree we are dividing by, the process is complete:
Conclusion: $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}=2 x-3+\frac{9 x-5}{x^{2}-2}$

## Long Division of Polynomials

Now that we have seen how to Add and Subtract and Multidy Polynomials, we will look at an example of Dividing Polynomials We will follow a similar algorithm as Long Division of numbers
Example 1: Simplify $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}$

$$
\begin{aligned}
& 2 x-3 \\
&\left.x^{2}-2\right) \begin{array}{l}
\text { First we divide the lead terms: } \\
\frac{2 x^{3}}{x^{2}}=2 x
\end{array} \\
& \hline 2 x^{3}-3 x^{2}+5 x+1 \\
&-2 x^{3}+4 x \text { Next we multiply } 2 x \cdot\left(x^{2}-2\right) \\
&-3 x^{2}+9 x+1 \text { and subtract } \\
&-3 x^{2}-6 \\
& 9 x-5 \text { Now we have a lower degree } \\
& \begin{array}{l}
\text { Now we repeat this process. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} \frac{-3 x^{2}}{x^{2}}=-3
\end{aligned}
$$

Once the degree of what is being divided is smaller than the degree we are dividing by, the process is complete:
Conclusion: $\frac{2 x^{3}-3 x^{2}+5 x+1}{x^{2}-2}=2 x-3+\frac{9 x-5}{x^{2}-2}$
Note: $2 x-3$ is called the Quotient and $9 x-5$ the Remainder

