Introduction to Polynomials

Introduction to Polynomials

So far, the two functions that we explored most deeply are:

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

$$
y=f(x)=m x+b
$$

Introduction to Polynomials

So far, the two functions that we explored most deeply are:

Linear functions:

$$
y=f(x)=m x+b
$$

Quadratic functions:
$y=f(x)=a x^{2}+b x+c$

Introduction to Polynomials

So far, the two functions that we explored most deeply are:
Linear functions:
Quadratic functions:

$$
y=f(x)=m x+b
$$

$$
y=f(x)=a x^{2}+b x+c
$$

Notice the similarity between these.

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions: Quadratic functions:

$$
y=f(x)=m x+b \quad y=f(x)=a x^{2}+b x+c
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions: Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions: Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions: Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions: Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad . \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually So, let's study them all at once!

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually
So, let's study them all at once!
A Polynomial is a function of the form:

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually
So, let's study them all at once!
A Polynomial is a function of the form:

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually
So, let's study them all at once!
A Polynomial is a function of the form:

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

The highest power of x, in this case n, is called the degree

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually
So, let's study them all at once!
A Polynomial is a function of the form:

$$
y=\mathbf{a}_{\mathbf{n}} x^{n}+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x^{n-1}+\cdots+\mathbf{a}_{\mathbf{2}} x^{2}+\mathbf{a}_{\mathbf{1}} x+\mathbf{a}_{\mathbf{0}}
$$

The highest power of x, in this case n, is called the degree
Because n can be big, we don't use a, b, c, etc. for the coefficients

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad . \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually So, let's study them all at once!
A Polynomial is a function of the form:

$$
y=\mathbf{a}_{\mathbf{n}} x^{n}+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x^{n-1}+\cdots+\mathbf{a}_{\mathbf{2}} x^{2}+\mathbf{a}_{\mathbf{1}} x+\mathbf{a}_{\mathbf{0}}
$$

The highest power of x, in this case n, is called the degree Because n can be big, we don't use a, b, c, etc. for the coefficients The coefficient of x^{n} is a_{n} is called the lead coefficient.

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad . \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually
So, let's study them all at once!
A Polynomial is a function of the form:

$$
y=\mathbf{a}_{\mathbf{n}} x^{n}+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x^{n-1}+\cdots+\mathbf{a}_{\mathbf{2}} x^{2}+\mathbf{a}_{\mathbf{1}} x+\mathbf{a}_{\mathbf{0}}
$$

The highest power of x, in this case n, is called the degree
Because n can be big, we don't use a, b, c, etc. for the coefficients The coefficient of x^{n} is a_{n} is called the lead coefficient.
And $a_{n} x^{n}$ is called the lead term.

Introduction to Polynomials

So far, the two functions that we explored most deeply are: Linear functions:

Quadratic functions:

$$
y=f(x)=m x^{1}+b x^{0} \quad . \quad y=f(x)=a x^{2}+b x^{1}+c x^{0}
$$

Notice the similarity between these.
Although it might not be obvious at first glance, in both of them we are adding up powers of x
The jump from linear to quadratic meant we included x^{2}
So, the next logical step is to see what happens if we include x^{3}
But then we'll need to include x^{4}
And after that x^{5}, x^{6}, etc.
We would need A LOT of time to talk about each one individually So, let's study them all at once!
A Polynomial is a function of the form:

$$
P(x)=y=a_{n} x^{n}+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x^{n-1}+\cdots+\mathbf{a}_{2} x^{2}+\mathbf{a}_{\mathbf{1}} x+\mathbf{a}_{\mathbf{0}}
$$

The highest power of x, in this case n, is called the degree
Because n can be big, we don't use a, b, c, etc. for the coefficients The coefficient of x^{n} is a_{n} is called the lead coefficient.
And $a_{n} x^{n}$ is called the lead term.

