Intro to Graphing Polynomials

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials.

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}
$$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the y-intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts?

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the $y-$ intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

$$
0=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials. Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the y - intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

$$
0=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

There is no perfect way to solve this.

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials.
Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the y - intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

$$
0=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

There is no perfect way to solve this.
Our best method is to find the roots is with the

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials.
Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the y - intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

$$
0=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

There is no perfect way to solve this.
Our best method is to find the roots is with the Rational Root Theorem
Once we find the roots $x=k_{1}, k_{2}, k_{3}, \ldots$ then the x-intercepts are:

Intro to Graphing Polynomials

When graphing lines and quadratics, we used the x - and y-intercepts as important reference points in our graphs.
Similarly, the x - and y-int are important in graphing Polynomials.
Also similar to linear and quadratic functions, it will be easier to find the y-intercept than the x-intercept.
For a polynomial:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

We can find the y - intercept by finding the point when $x=0$

$$
P(0)=a_{n} \cdot 0^{n}+a_{n-1} \cdot 0^{n-1}+\cdots+a_{2} \cdot 0^{2}+a_{1} \cdot 0+a_{0}=a_{0}
$$

So, for any polynomial, the y-intercept is: $\left(0, a_{0}\right)$
What about the x-intercepts? $y=0$
So, to find the x-intercepts we need to solve:

$$
0=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

There is no perfect way to solve this.
Our best method is to find the roots is with the Rational Root Theorem Once we find the roots $x=k_{1}, k_{2}, k_{3}, \ldots$ then the x-intercepts are: $\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right)$,

Intro to Graphing Polynomials

Intro to Graphing Polynomials
Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

Intro to Graphing Polynomials
Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } \quad y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa).

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not?

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not?
Because then there would need to be another x-intercept between them

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not?
Because then there would need to be another x-intercept between them

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } \quad y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

What remains to understand is what happens at the ends of the graph.

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

What remains to understand is what happens at the ends of the graph.

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

What remains to understand is what happens at the ends of the graph.

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

What remains to understand is what happens at the ends of the graph.

Intro to Graphing Polynomials

Suppose that we find all of the x - and y-intercepts are:

$$
x \text {-int: }\left(k_{1}, 0\right),\left(k_{2}, 0\right),\left(k_{3}, 0\right) \quad \text { and } y \text {-int: }\left(0, a_{0}\right)
$$

What does the graph look like between the intercepts?
We might not know exactly what the graph looks like.
The graph does not change from pos. to neg. (or vice-versa). Why not? Because then there would need to be another x-intercept between them This is the same between each pair of x-intercepts

Notice: For our graph to connect the x-int there are Turning Points
We will need to wait until Calculus to pinpoint the coords of Turning Points

What remains to understand is what happens at the ends of the graph. In other words, what happens for really large x-values?

