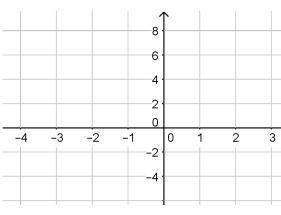

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

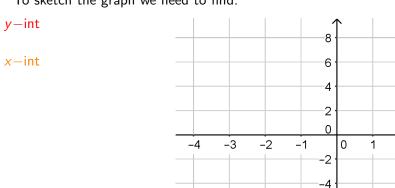
Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

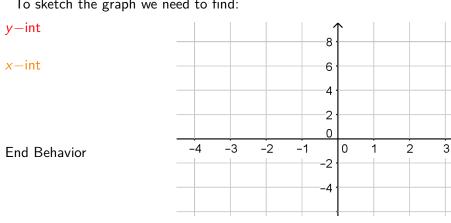


Example: Sketch the graph of the Polynomial P(x):

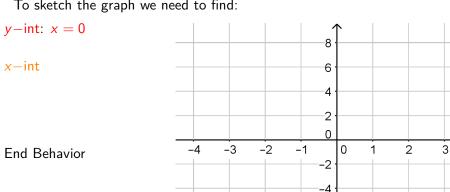
$$P(x) = 3x^3 + 2x^2 - 7x + 2$$


To sketch the graph we need to find:

y-int


Example: Sketch the graph of the Polynomial P(x):

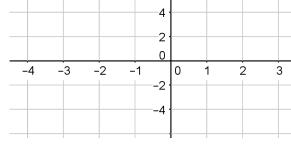
$$P(x) = 3x^3 + 2x^2 - 7x + 2$$


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

Example: Sketch the graph of the Polynomial P(x):

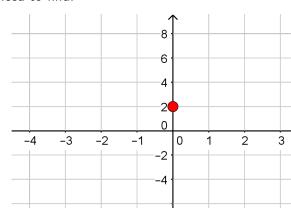
$$P(x) = 3x^3 + 2x^2 - 7x + 2$$


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

End Behavior

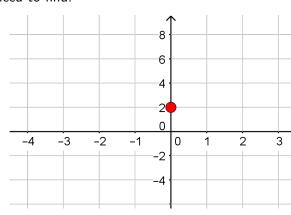


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

y-int:
$$x = 0 \rightarrow (0,2)$$

 $P(0) = 2$
x-int

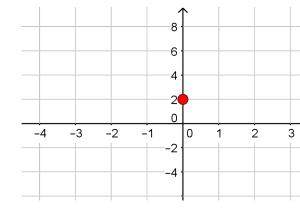


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

y-int:
$$x = 0 \to (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$

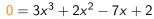


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

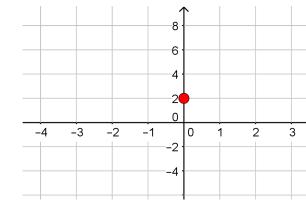
y-int:
$$x = 0 \rightarrow (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$
 $0 = 3x^3 + 2x^2 - 7x + 2$



Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

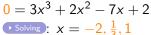

To sketch the graph we need to find:

y-int:
$$x = 0 \to (0, 2)$$

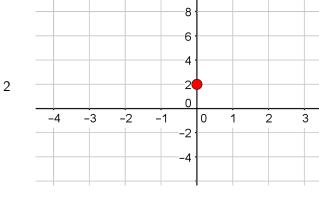
 $P(0) = 2$
x-int: $y = 0$

▶ Solving

End Behavior



Example: Sketch the graph of the Polynomial P(x):

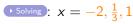

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

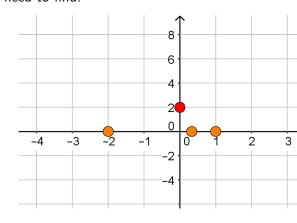
y-int:
$$x = 0 \to (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$

Solving: $x = -2, \frac{1}{3}, 1$ End Behavior



Example: Sketch the graph of the Polynomial P(x):


$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

y-int:
$$x = 0 \rightarrow (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2, 0), (\frac{1}{3}, 0), (1, 0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$

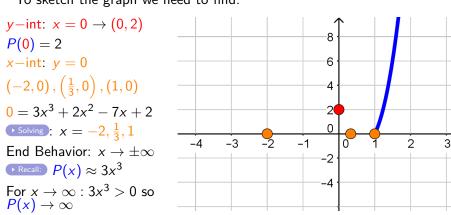
End Behavior

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

y-int:
$$x = 0 \rightarrow (0,2)$$

P(0) = 2
x-int: $y = 0$
(-2,0), $(\frac{1}{3},0)$, (1,0)
0 = 3x³ + 2x² - 7x + 2
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \rightarrow \pm \infty$


Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

y-int:
$$x = 0 \rightarrow (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2,0)$, $(\frac{1}{3},0)$, $(1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
► Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \rightarrow \pm \infty$
► Recall: $P(x) \approx 3x^3$

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

$$y-int: x = 0 \to (0,2)$$
 $P(0) = 2$
 $x-int: y = 0$
 $(-2,0), (\frac{1}{3},0), (1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
• Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \to \pm \infty$
• Recall: $P(x) \approx 3x^3$
For $x \to \infty: 3x^3 > 0$ so $P(x) \to \infty$

For
$$x \to -\infty$$
: $3x^3 < 0$ so $P(x) \to -\infty$

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

$$y-int: x = 0 \to (0,2)$$
 $P(0) = 2$
 $x-int: y = 0$
 $(-2,0), (\frac{1}{3},0), (1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \to \pm \infty$
Recall: $P(x) \approx 3x^3$
For $x \to \infty: 3x^3 > 0$ so $P(x) \to \infty$

For
$$x \to -\infty$$
: $3x^3 < 0$ so $P(x) \to -\infty$
What happens between the x -int?

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

y-int:
$$x = 0 \rightarrow (0,2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2,0), (\frac{1}{3},0), (1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \rightarrow \pm \infty$
Recall: $P(x) \approx 3x^3$
For $x \rightarrow \infty$: $3x^3 > 0$ so $P(x) \rightarrow \infty$

For $x \to -\infty$: $3x^3 < 0$ so $P(x) \to -\infty$

What happens between the x-int?

The graph can't cross the x-axis between intercepts.

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

y-int:
$$x = 0 \to (0,2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2,0)$, $(\frac{1}{3},0)$, $(1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \to \pm \infty$
Recall: $P(x) \approx 3x^3$
For $x \to \infty$: $3x^3 > 0$ so $P(x) \to \infty$

For $x \to -\infty$: $3x^3 < 0$ so $P(x) \to -\infty$

What happens between the x-int?

The graph can't cross the x-axis between intercepts.

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

y-int:
$$x = 0 \to (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2,0), (\frac{1}{3},0), (1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \to \pm \infty$
Recall: $P(x) \approx 3x^3$
For $x \to \infty$: $3x^3 > 0$ so $P(x) \to \infty$

For $x \to -\infty$: $3x^3 < 0$ so $P(x) \to -\infty$ What happens between the x-int?

The graph can't cross the x-axis between intercepts.

Check: P(.5) = -.625 < 0

Example: Sketch the graph of the Polynomial P(x):

$$P(x) = 3x^3 + 2x^2 - 7x + 2$$

To sketch the graph we need to find:

y-int:
$$x = 0 \to (0, 2)$$

 $P(0) = 2$
x-int: $y = 0$
 $(-2,0), (\frac{1}{3},0), (1,0)$
 $0 = 3x^3 + 2x^2 - 7x + 2$
Solving: $x = -2, \frac{1}{3}, 1$
End Behavior: $x \to \pm \infty$
Recall: $P(x) \approx 3x^3$
For $x \to \infty$: $3x^3 > 0$ so $P(x) \to \infty$

For $x \to -\infty$: $3x^3 < 0$ so $P(x) \to -\infty$

What happens between the x-int?

The graph can't cross the x-axis between intercepts.

Check: P(.5) = -.625 < 0