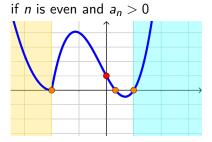
Graphing Polynomials at large x values Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

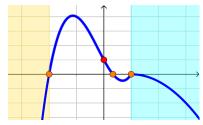

if *n* is even and $a_n > 0$

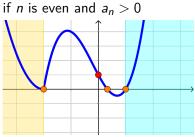
Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

if *n* is even and $a_n > 0$

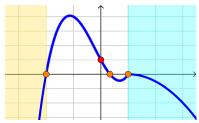


Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

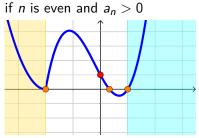



• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

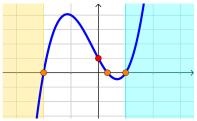
if *n* is even and $a_n < 0$

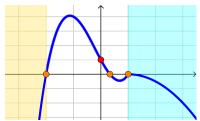


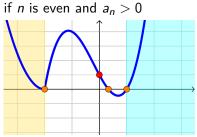
• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

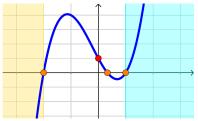


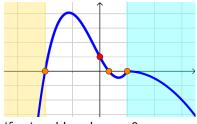
if *n* is odd and $a_n > 0$


if *n* is even and $a_n < 0$

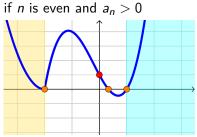

• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:


if *n* is odd and $a_n > 0$

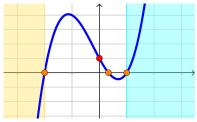

if *n* is even and $a_n < 0$


• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

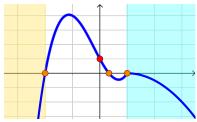
if *n* is odd and $a_n > 0$

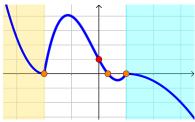


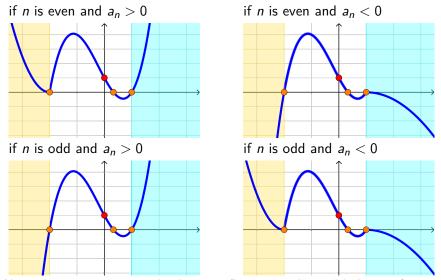
if *n* is even and $a_n < 0$



if *n* is odd and $a_n < 0$


• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:


if *n* is odd and $a_n > 0$


if *n* is even and $a_n < 0$

if *n* is odd and $a_n < 0$

• Using that $P(x) \approx a_n x^n$ Let's consolidate what we saw:

Note: It is easier to use this logic to figure out the end behavior for each graph than to memorize all of these scenarios!