Graphing Polynomials at large x values

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts.

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x

Graphing Polynomials at large x values

- we learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x So we learned how polynomials behave for large values of x algebraically.

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x So we learned how polynomials behave for large values of x algebraically. For large x, a polynomial: $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

$$
P(x) \approx a_{n} x^{n}
$$

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x - So we leaned how polynomials behave for large values of x algebraically. For large x, a polynomial: $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{o}$

$$
P(x) \approx a_{n} x^{n}
$$

In other words, the polynomial behaves like it's lead term

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x So we learned how polynomials behave for large values of x algebraically. For large x, a polynomial: $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

$$
P(x) \approx a_{n} x^{n}
$$

In other words, the polynomial behaves like it's lead term
So, to understand how polynomials behave for large values of x, we look at how the lead term $\left(a_{n} x^{n}\right)$ behaves for large values of x

Graphing Polynomials at large x values

- We learned much about graphing polynomials just from the intercepts. To complete our graph, we need to understand what happens for large x So we learned how polynomials behave for large values of x algebraically. For large x, a polynomial: $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

$$
P(x) \approx a_{n} x^{n}
$$

In other words, the polynomial behaves like it's lead term
So, to understand how polynomials behave for large values of x, we look at how the lead term $\left(a_{n} x^{n}\right)$ behaves for large values of x We will abbreviate "large values of x " as: $x \rightarrow \infty$ or

Graphing Polynomials at large x values

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side For $x \rightarrow \infty$:

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

$$
P(x) \approx a_{n} x^{n}>0
$$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

$$
P(x) \approx a_{n} x^{n}>0
$$

If $a_{n}>0$ then for $x \rightarrow \infty: P(x) \approx a_{n} x^{n} \rightarrow \infty$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

$$
P(x) \approx a_{n} x^{n}>0
$$

If $a_{n}<0$ then

If $a_{n}>0$ then for $x \rightarrow \infty: P(x) \approx a_{n} x^{n} \rightarrow \infty$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

$$
P(x) \approx a_{n} x^{n}>0
$$

If $a_{n}<0$ then

$$
P(x) \approx a_{n} x^{n}<0
$$

If $a_{n}>0$ then for $x \rightarrow \infty: P(x) \approx a_{n} x^{n} \rightarrow \infty$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, starting with the right side
For $x \rightarrow \infty$:
$x^{n} \rightarrow \infty$
What about a_{n} ?
If $a_{n}>0$ then

$$
P(x) \approx a_{n} x^{n}>0
$$

If $a_{n}<0$ then

$$
P(x) \approx a_{n} x^{n}<0
$$

If $a_{n}>0$ then for $x \rightarrow \infty: P(x) \approx a_{n} x^{n} \rightarrow \infty$
If $a_{n}<0$ thenfor $x \rightarrow \infty: P(x) \approx a_{n} x^{n} \rightarrow-\infty$

Graphing Polynomials at large x values

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then $x^{n}>0$ But if n is odd and $x<0$, then

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then \qquad But if n is odd and $x<0$, then

If n is even and $a_{n}>0$ then: $a_{n} x^{n}>0$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then $x^{n}>0$ But if n is odd and $x<0$, then

If n is even and $a_{n}>0$ then: $a_{n} x^{n}>0$
If n is even and $a_{n}<0$ then: $a_{n} x^{n}<0$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then But if n is odd and $x<0$, then

If n is even and $a_{n}>0$ then: $a_{n} x^{n}>0$
If n is even and $a_{n}<0$ then:
$a_{n} x^{n}<0$
If n is odd and $a_{n}>0$ then: $a_{n} x^{n}<0$

Graphing Polynomials at large x values

To complete our graph, we need to understand what happens for large x

$$
P(x) \approx a_{n} x^{n}
$$

Let's see what happens one side at a time, now with the left side This side is harder because For This is because, if n is even and $x<0$, then But if n is odd and $x<0$, then

If n is even and $a_{n}>0$ then: $a_{n} x^{n}>0$
If n is even and $a_{n}<0$ then:
$a_{n} x^{n}<0$
If n is odd and $a_{n}>0$ then:
$a_{n} x^{n}<0$
If n is odd and $a_{n}<0$ then: $a_{n} x^{n}>0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:

if n is even and $a_{n}>0$

if n is even and $a_{n}<0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is even and $a_{n}<0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is even and $a_{n}<0$

if n is odd and $a_{n}>0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is odd and $a_{n}>0$

if n is even and $a_{n}<0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is odd and $a_{n}>0$

if n is even and $a_{n}<0$

if n is odd and $a_{n}<0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is odd and $a_{n}>0$

if n is even and $a_{n}<0$

if n is odd and $a_{n}<0$

Graphing Polynomials at large x values

Using that $P(x) \approx a_{n} x^{n}$ Let's consolidate what we saw:
if n is even and $a_{n}>0$

if n is odd and $a_{n}>0$

if n is even and $a_{n}<0$

if n is odd and $a_{n}<0$

Note: It is easier to use this logic to figure out the end behavior for each graph than to memorize all of these scenarios!

