Solving Non-Linear Systems of Equations - Example 3

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{array}{r}
y=x \\
y^{2}+x^{2}=1
\end{array}
$$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute : $y=y=x$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :

$$
y=y=x
$$

$$
x^{2}+x^{2}=1
$$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :

$$
\begin{aligned}
& y=y=x \\
& 2 x^{2}=x^{2}+x^{2}=1
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :

$$
\begin{aligned}
& y=y=x \\
& 2 x^{2}=x^{2}+x^{2}=1
\end{aligned}
$$

Here, we can solve for the x-value of the solution

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :

$$
\begin{aligned}
& y=y=x \\
& 2 x^{2}=x^{2}+x^{2}=1
\end{aligned}
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get:

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :

$$
y=y=x
$$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$ Using the x-values of the points $x=-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$ Using the x-values of the points $x=-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation $y=x$, so we get the points:

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$ Using the x-values of the points $x=-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation $y=x$, so we get the points:

$$
\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) \text { and }\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

Solving Non-Linear Systems of Equations - Example 3

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
y & =x \\
y^{2}+x^{2} & =1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we Substitute :
$y=y=x$

$$
2 x^{2}=x^{2}+x^{2}=1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^{2}=\frac{1}{2}$
Taking the square root gives us the solutions: $x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}= \pm \frac{\sqrt{2}}{2}$ Using the x-values of the points $x=-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation $y=x$, so we get the points:

$$
\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) \text { and }\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

Note: The graph was not used to find solutions, only to visualize them

