Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Example: Find solutions to the System of Equations:

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $x^2 + x^2 = 1$

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get:

Example: Find solutions to the System of Equations:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

 $\mathbf{y} = \mathbf{y} = \mathbf{x}$

 $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

-2 2 3 To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}}$

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x_{-}^2 = \frac{1}{2}$

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}}$

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

 $\mathbf{y} = \mathbf{y} = \mathbf{x}$ $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$ Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$ Using the x-values of the points $x = -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

Using the x-values of the points $x = -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation y = x, so we get the points:

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

Using the x-values of the points $x = -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation y = x, so we get the points:

$$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$$
 and $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$

$$y = x$$
$$y^2 + x^2 = 1$$

Graphically, solutions are the Points of Intersection

Algebraically, we Substitute :

y = y = x $2x^2 = x^2 + x^2 = 1$

Here, we can solve for the x-value of the solution

To solve for x, we can Divide both sides by 2 to get: $x^2 = \frac{1}{2}$

Taking the square root gives us the solutions: $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

Using the x-values of the points $x = -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}$ to find the y-values Using the equation y = x, so we get the points:

$$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$$
 and $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$

Note: The graph was not used to find solutions, only to visualize them