Solving Non-Linear Systems of Equations - Example 2

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 2
Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
1-x^{2}+x^{2}+1=x^{2}-1+x^{2}+1
$$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \neq 1=2 x^{2}
$$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-I+x^{2} \not X I=2 x^{2}
$$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2}+1=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values For $x=-1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values For $x=-1: y=(-1)^{2}-1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values For $x=-1: y=(-1)^{2}-1=0$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values For $x=-1: y=(-1)^{2}-1=0 \rightarrow$ A solution is: $(-1,0)$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid I=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values For $x=-1: y=(-1)^{2}-1=0 \rightarrow$ A solution is: $(-1,0)$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid エ=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1$: $y=(-1)^{2}-1=0 \rightarrow \mathrm{~A}$ solution is: $(-1,0)$
For $x=1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2}+1=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow$ A solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2}+1=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow \mathrm{~A}$ solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1=0$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2}+1=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow \mathrm{~A}$ solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1=0 \rightarrow A$ solution is: $(1,0)$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid エ=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow$ A solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1=0 \rightarrow A$ solution is: $(1,0)$

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid エ=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow \mathrm{~A}$ solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1=0 \rightarrow$ A solution is: $(1,0)$
Note: We can use either equation, because solutions are to both!

Solving Non-Linear Systems of Equations - Example 2

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=1-x^{2} \\
& y=x^{2}-1
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
1-x^{2}=x^{2}-1
$$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^{2} on one side by Adding $x^{2}+1$

$$
2=1-x^{2}+x^{2}+1=x^{2}-1+x^{2} \nmid エ=2 x^{2}
$$

Dividing by 2 gives: $x^{2}=1 \rightarrow x=-1,1$
We can use the x-values of the points $x=-1,1$ to find the y-values
For $x=-1: y=(-1)^{2}-1=0 \rightarrow \mathrm{~A}$ solution is: $(-1,0)$
For $x=1$: $y=(1)^{2}-1=0 \rightarrow$ A solution is: $(1,0)$
Note: We can use either equation, because solutions are to both!
Note: The graph was not used to find solutions, only to visualize them

