Example: Find solutions to the System of Equations:

$$y = 1 - x^2$$
$$y = x^2 - 1$$

Example: Find solutions to the System of Equations:

Example: Find solutions to the System of Equations:

Graphically, solutions are the Points of Intersection

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

$$1 - x^2 = x^2 - 1$$

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1-x^2=x^2-1$

Here, we can solve for the x-value of the solution

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$

ò à 4

Example: Find solutions to the System of Equations: $y = 1 - x^2$ $y = x^2 - 1$

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $1 - x^2 + x^2 + 1 = x^2 + x^2 + 1 = 2x^2$

Example: Find solutions to the System of Equations:

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 + x^2 + x^2 + 1 = x^2 + x^2 + 1 = 2x^2$

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1$

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1-x^2=x^2-1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 + x^2 + x^2 + 1 = x^2 + 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1$

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0$

Example: Find solutions to the System of Equations:

Algebraically, we look at: y = y

 $1-x^2=x^2-1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

Algebraically, we look at: y = y

 $1-x^2=x^2-1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)

Example: Find solutions to the System of Equations:

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1

Example: Find solutions to the System of Equations: $y = 1 - x^2$

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1$

Example: Find solutions to the System of Equations: $y = 1 - x^2$

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1 = 0$

Example: Find solutions to the System of Equations: $y = 1 - x^2$

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1 = 0 \rightarrow A$ solution is: (1, 0)

Example: Find solutions to the System of Equations: $y = 1 - x^2$

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1 = 0 \rightarrow A$ solution is: (1, 0)

Example: Find solutions to the System of Equations: $y = 1 - x^2$

Algebraically, we look at: y = y

 $1 - x^2 = x^2 - 1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1 = 0 \rightarrow A$ solution is: (1, 0)Note: We can use either equation, because solutions are to both!

Example: Find solutions to the System of Equations: $y = 1 - x^{2}$ $y = x^{2} - 1$

Algebraically, we look at: y = y

 $1-x^2=x^2-1$

Here, we can solve for the x-value of the solution

To solve for x, we can isolate x^2 on one side by Adding $x^2 + 1$ $2 = 1 - x^2 + x^2 + 1 = x^2 - 1 + x^2 + 1 = 2x^2$ Dividing by 2 gives: $x^2 = 1 \rightarrow x = -1, 1$ We can use the x-values of the points x = -1, 1 to find the y-values For x = -1: $y = (-1)^2 - 1 = 0 \rightarrow A$ solution is: (-1, 0)For x = 1: $y = (1)^2 - 1 = 0 \rightarrow A$ solution is: (1, 0)Note: We can use either equation, because solutions are to both! Note: The graph was not used to find solutions, only to visualize them