Solving Non-Linear Systems of Equations - Example 1

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 1
Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Solving Non-Linear Systems of Equations - Example 1

 Example: Find solutions to the System of Equations:$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)
$$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values For $x=0$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow$ A solution is: $(0,3)$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow$ A solution is: $(0,3)$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow$ A solution is: $(0,3)$
For $x=2$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow$ A solution is: $(0,3)$
For $x=2: y=-2 \cdot 2+3$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow$ A solution is: $(0,3)$
For $x=2: y=-2 \cdot 2+3=-1$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow A$ solution is: $(0,3)$
For $x=2: y=-2 \cdot 2+3=-1 \rightarrow A$ solution is: $(2,-1)$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow A$ solution is: $(0,3)$
For $x=2: y=-2 \cdot 2+3=-1 \rightarrow A$ solution is: $(2,-1)$

Solving Non-Linear Systems of Equations - Example 1

Example: Find solutions to the System of Equations:

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x+3
\end{aligned}
$$

Graphically, solutions are the Points of Intersection
Algebraically, we look at: $y=y$

$$
x^{2}-4 x+3=-2 x+3
$$

Here, we can solve for the $x-$ value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$
x^{2}-2 x=x^{2}-4 x+3-(-2 x+3)=-2 x+3-(-2 x+3)=0
$$

We can solve the quadratic equation $x^{2}-2 x=0 \rightarrow x=0,2$
We can use the x-values of the points $x=0,2$ to find the y-values
For $x=0: y=-2 \cdot 0+3=3 \rightarrow A$ solution is: $(0,3)$
For $x=2: y=-2 \cdot 2+3=-1 \rightarrow A$ solution is: $(2,-1)$
Note: The graph was not used to find solutions, only to visualize them

