Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$x^{2} - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3)$$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$x^{2} - 2x = x^{2} - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$

We can solve the quadratic equation $x^2 - 2x = 0$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x - x^2 - 4x + 3 = (-2x + 3) = -2x + 3 = (-2x + 3) = 0$

$$x^{2} - 2x = x^{2} - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $\frac{1}{2} = \frac{1}{2} = \frac{$

$$x^{2}-2x = x^{2}-4x+3-(-2x+3) = -2x+3-(-2x+3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y $x^2 - 4x + 3 = -2x + 3$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$ We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x=0,2 to find the y-values For x=0

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y $x^2 - 4x + 3 = -2x + 3$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^{2}-2x = x^{2}-4x+3-(-2x+3) = -2x+3-(-2x+3) = 0$ We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$ We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$ We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y $x^2 - 4x + 3 = -2x + 3$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$ We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$ We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x - x^2 - 4x + 3 = (-2x + 3) = -2x + 3 = (-2x + 3) = 0$

$$x^{2}-2x = x^{2}-4x+3-(-2x+3) = -2x+3-(-2x+3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

For x = 2

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x - x^2 - 4x + 3 = (-2x + 3) = -2x + 3 = (-2x + 3) = 0$

$$x^{2}-2x = x^{2}-4x+3-(-2x+3) = -2x+3-(-2x+3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

For x = 2: $y = -2 \cdot 2 + 3$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x - x^2 - 4x + 3 = (-2x + 3) = -2x + 3 = (-2x + 3) = 0$

$$x^{2}-2x = x^{2}-4x+3-(-2x+3) = -2x+3-(-2x+3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

For
$$x = 2$$
: $y = -2 \cdot 2 + 3 = -1$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y $x^2 - 4x + 3 = -2x + 3$

Here, we can solve for the
$$x$$
-value

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation:

$$x^{2} - 2x = x^{2} - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

For
$$x = 2$$
: $y = -2 \cdot 2 + 3 = -1 \rightarrow A$ solution is: $(2, -1)$

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = x^2 - 4x + 3 - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$

$$(x^2 - 2x) = x^2 - 4x + 5 - (-2x + 5) = -2x + 5 - (-2x + 5)$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \rightarrow A$ solution is: (0,3)

For x = 2: $y = -2 \cdot 2 + 3 = -1 \rightarrow A$ solution is: (2, -1)

Example: Find solutions to the System of Equations:

$$y = x^2 - 4x + 3$$
$$y = -2x + 3$$

Graphically, solutions are the Points of Intersection

Algebraically, we look at: y = y

$$x^2 - 4x + 3 = -2x + 3$$

Here, we can solve for the x-value of the solution

To solve for x, we want to get 0 on one side of the quadratic equation: $x^2 - 2x = \frac{x^2}{4x} + \frac{3}{4x} - (-2x + 3) = -2x + 3 - (-2x + 3) = 0$

We can solve the quadratic equation
$$x^2 - 2x = 0 \rightarrow x = 0.2$$

We can solve the quadratic equation $x^2 - 2x = 0 \rightarrow x = 0, 2$

We can use the x-values of the points x = 0, 2 to find the y-values

For x = 0: $y = -2 \cdot 0 + 3 = 3 \to A$ solution is: (0,3)

For x = 2: $y = -2 \cdot 2 + 3 = -1 \rightarrow A$ solution is: (2, -1)

Note: The graph was not used to find solutions, only to visualize them