Solving Inequalities - General

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq$ RHS OR LHS $>$ RHS OR LHS $\geq$ RHS)

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ )
Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq$ RHS OR LHS $>$ RHS OR LHS $\geq R H S$ )
Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ )
Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR $L H S>R H S$ OR $L H S \geq R H S$ ) Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.


## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ ) Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.


Now, we know that in each region the larger side can't change.

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ ) Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.


Now, we know that in each region the larger side can't change. So, in each region LHS > RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ ) Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.


Now, we know that in each region the larger side can't change. So, in each region LHS > RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
It is all or nothing.

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

(OR LHS $\leq R H S$ OR LHS $>$ RHS OR LHS $\geq R H S$ ) Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).
This makes solving an inequality as easy as solving the equality If we find that $L H S=R H S$ at $x=1,4$ then we can use this to split up the number line.


Now, we know that in each region the larger side can't change. So, in each region LHS > RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
It is all or nothing.
How do we figure out which situation we're in?

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>$ RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>$ RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?
To figure out if the LHS or RHS is larger, pick an $x$-value in that region and see which is larger at that value.

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>$ RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?
To figure out if the LHS or RHS is larger, pick an $x$-value in that region and see which is larger at that value. If the $L H S<R H S$ for one value, then $L H S<R H S$ for every value on the region.

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>R H S$ for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?
To figure out if the LHS or RHS is larger, pick an $x$-value in that region and see which is larger at that value. If the $L H S<R H S$ for one value, then $L H S<R H S$ for every value on the region.
If one value in a region is a solution, then every value in the region is a solution

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>$ RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?
To figure out if the LHS or RHS is larger, pick an $x$-value in that region and see which is larger at that value. If the $L H S<R H S$ for one value, then $L H S<R H S$ for every value on the region.
If one value in a region is a solution, then every value in the region is a solution
Similarly, if one value in a region is not a solution

## Solving Inequalities - General

Suppose we are trying to solving a general inequality:

$$
L H S<R H S
$$

Remember the only value of $x$ where the inequality switches which side is larger is at a value of $x$ that the two sides are equal ( $L H S=R H S$ ).


In each region $L H S>$ RHS for every value (no solutions) OR LHS $<$ RHS for every value (solutions)
How do we figure out which situation we're in?
To figure out if the LHS or RHS is larger, pick an $x$-value in that region and see which is larger at that value. If the $L H S<R H S$ for one value, then $L H S<R H S$ for every value on the region.
If one value in a region is a solution, then every value in the region is a solution
Similarly, if one value in a region is not a solution, then every value in the region is not a solution

