1-1 Functions - Example 1

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a $1-1$ function.

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a 1-1 function.
Recall: A function is 1-1 if no two pairs have the same y-value.

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a 1-1 function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a 1-1 function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a 1-1 function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a 1-1 function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value Is our y-value shared by 2 or more points?

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a $1-1$ function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value Is our y-value shared by 2 or more points?
We should check this at every y-value

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a $1-1$ function.
Recall: A function is 1-1 if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value Is our y-value shared by 2 or more points?
We should check this at every y-value
There are infinitely many y-values, so we can't draw a line at each one!

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a $1-1$ function.
Recall: A function is $1-1$ if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value Is our y-value shared by 2 or more points?
We should check this at every y-value
There are infinitely many y-values, so we can't draw a line at each one! Looking at the graph, we see that no y-value is shared by two points.

1-1 Functions - Example 1

Example: Determine if the function:

$$
f(x)=2 x+3
$$

is a $1-1$ function.
Recall: A function is $1-1$ if no two pairs have the same y-value.
To see if f is $1-1$, we can graph $f(x)=2 x+3$ because it is line with: y-intercept at $(0,3)$ and slope $=2$

We need to look at the y-values and see if any is shared by two points To do visualize this, we can draw a horizontal line at each y-value Is our y-value shared by 2 or more points?
We should check this at every y-value
There are infinitely many y-values, so we can't draw a line at each one! Looking at the graph, we see that no y-value is shared by two points.
Conclusion: The function $f(x)=2 x+3$ is a $1-1$ function.

