1-1 Functions

1-1 Functions

- Recalli we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.

1-1 Functions

\rightarrow Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value.

1-1 Functions

\rightarrow Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value.
However, a function can have one y - paired with two x-values.

1-1 Functions

Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value.
However, a function can have one y-paired with two x-values.
For example, $f(x)=x^{2}$ is a function even though $(3,9)$ and $(-3,9)$ are two points with the same y-value.

1-1 Functions

Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value. However, a function can have one y - paired with two x-values. For example, $f(x)=x^{2}$ is a function even though $(3,9)$ and $(-3,9)$ are two points with the same y-value.
For some functions though, there are no two pairs that have the same y-value.

1-1 Functions

Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value. However, a function can have one y-paired with two x-values. For example, $f(x)=x^{2}$ is a function even though $(3,9)$ and $(-3,9)$ are two points with the same y-value.
For some functions though, there are no two pairs that have the same y-value.
Which means that for these special functions there is exactly $1 x$-value for each y-value, and exactly $1 y$-value for each x-value.

1-1 Functions

Recall: we define a function as a set of ordered pairs (x, y) so that no two pairs have the same x-value.
In other words, for x-value there is only one y-value. However, a function can have one y-paired with two x-values. For example, $f(x)=x^{2}$ is a function even though $(3,9)$ and $(-3,9)$ are two points with the same y-value.
For some functions though, there are no two pairs that have the same y-value.
Which means that for these special functions there is exactly $1 x$-value for each y-value, and exactly $1 y$-value for each x-value.
These functions are called 1-1 (one-to-one) functions

