• We defined an inverse function in the following way:

• We defined an inverse function in the following way:

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if:

• We defined an inverse function in the following way:

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if: • $x = f^{-1}(f(x))$

- Domain of $f^{-1} =$ Range of f
- Range of f^{-1} =Domain of f

• We defined an inverse function in the following way:

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if: • $x = f^{-1}(f(x))$

- Domain of $f^{-1} =$ Range of f
- Range of f^{-1} =Domain of f

So, the inverse of a function y = f(x) switches the roles of x and y

• We defined an inverse function in the following way:

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if: • $x = f^{-1}(f(x))$

- Domain of $f^{-1} =$ Range of f
- Range of f^{-1} =Domain of f

So, the inverse of a function y = f(x) switches the roles of x and y. The input of f^{-1} is output of f; the output of f^{-1} is input of f

• We defined an inverse function in the following way:

Range

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if: • $x = f^{-1}(f(x))$

- Domain of $f^{-1} =$ Range of f
- Range of f^{-1} =Domain of f

So, the inverse of a function y = f(x) switches the roles of x and y

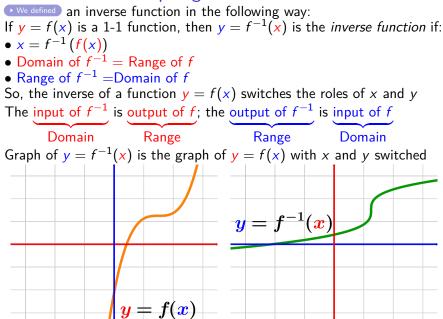
The input of f^{-1} is output of f; the output of f^{-1} is input of f

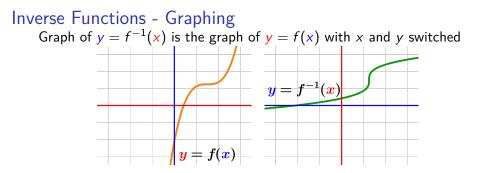
Domain

Range Do

Domain

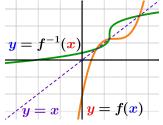
• We defined an inverse function in the following way:

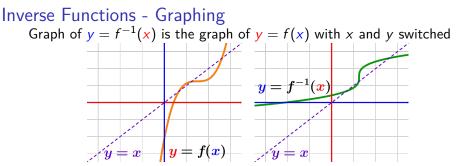

If y = f(x) is a 1-1 function, then $y = f^{-1}(x)$ is the *inverse function* if: • $x = f^{-1}(f(x))$

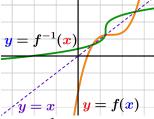

- Domain of f^{-1} = Range of f
- Range of f^{-1} =Domain of f

So, the inverse of a function y = f(x) switches the roles of x and y

The input of f^{-1} is output of f; the output of f^{-1} is input of f


Domain Graph of $y = f^{-1}(x)$ is the graph of y = f(x) with x and y switched





If we graph these on the same plane, we can make the observation that switching the roles of x and y reflects the graph across the line y = x

If we graph these on the same plane, we can make the observation that switching the roles of x and y reflects the graph across the line y = x

In General: The graph $y = f^{-1}(x)$ is the graph of y = f(x) reflected across the line y = x