Inverse Functions - Example 3

Inverse Functions - Example 3

- We saw that the function $y=f(x)=x^{2}$ is not 1-1

Inverse Functions - Example 3

C We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.

Inverse Functions - Example 3

- We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function. Or does it?

Inverse Functions - Example 3

- We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function. Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$

Inverse Functions - Example 3

- We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.
Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$
But if we restrict the domain to only values $x \geq 0$ then f is $1-1$

Inverse Functions - Example 3

C We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.
Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$
But if we restrict the domain to only values $x \geq 0$ then f is 1-1
Restricting the domain means we only input the values $x \geq 0$

Inverse Functions - Example 3

C We saw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.
Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$
But if we restrict the domain to only values $x \geq 0$ then f is 1-1
Restricting the domain means we only input the values $x \geq 0$
This creates a new function $\tilde{f}=f$ for values of $x \geq 0$

Inverse Functions - Example 3

CWessw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.
Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$
But if we restrict the domain to only values $x \geq 0$ then f is $1-1$
Restricting the domain means we only input the values $x \geq 0$
This creates a new function $\tilde{f}=f$ for values of $x \geq 0$
On the domain $x \geq 0$ we can find an inverse of \tilde{f}

Inverse Functions - Example 3

CWessw that the function $y=f(x)=x^{2}$ is not 1-1

This means, that $y=x^{2}$ does not have an inverse function.
Or does it?
f is not 1-1 if we look at the entire domain; $(-\infty, \infty)$
But if we restrict the domain to only values $x \geq 0$ then f is $1-1$
Restricting the domain means we only input the values $x \geq 0$
This creates a new function $\tilde{f}=f$ for values of $x \geq 0$
On the domain $x \geq 0$ we can find an inverse of \tilde{f}
We have found it before! $\tilde{f}^{-1}=\sqrt{x}$

Inverse Functions - Example 3

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$\tilde{f}^{-1}(x)=\sqrt{x}$

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$\tilde{f}^{-1}(x)=\sqrt{x}$
Let's make some observations about this.

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$\tilde{f}^{-1}(x)=\sqrt{x}$
Let's make some observations about this.

- We can get the graph of $\tilde{f}^{-1}(x)=\sqrt{x}$ by reflecting the graph of \tilde{f} across the line $y=x$

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$$
\tilde{f}^{-1}(x)=\sqrt{x}
$$

Let's make some observations about this.

- We can get the graph of $\tilde{f}^{-1}(x)=\sqrt{x}$ by reflecting the graph of \tilde{f} across the line $y=x$

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$\tilde{f}^{-1}(x)=\sqrt{x}$
Let's make some observations about this.

- We can get the graph of $\tilde{f}^{-1}(x)=\sqrt{x}$ by reflecting the graph of \tilde{f} across the line $y=x$
The domain of $\tilde{f}(x)$ is the range of $\tilde{f}^{-1}(x)=\sqrt{x}$ which is: $[0, \infty)$

Inverse Functions - Example 3

Restricting the Domain of $f(x)=x^{2}$ to $x \geq 0$ gives the 1-1 func: $\tilde{f}(x)$

$\tilde{f}^{-1}(x)=\sqrt{x}$
Let's make some observations about this.

- We can get the graph of $\tilde{f}^{-1}(x)=\sqrt{x}$ by reflecting the graph of \tilde{f} across the line $y=x$
The domain of $\tilde{f}(x)$ is the range of $\tilde{f}^{-1}(x)=\sqrt{x}$ which is: $[0, \infty)$
The range of $\tilde{f}(x)$ is the domain of $\tilde{f}^{-1}(x)=\sqrt{x}$ which is: $[0, \infty)$

