

Inverse Functions - Example 3 • We saw that the function $y = f(x) = x^2$ is not 1-1 6 4 -5 -4 -3 -2 -1 0 3 1 2 4 5 -4 -6

This means, that $y = x^2$ does not have an inverse function.

Inverse Functions - Example 3 We saw that the function $y = f(x) = x^2$ is not 1-1

-6

This means, that $y = x^2$ does not have an inverse function. Or does it?

Inverse Functions - Example 3 We saw that the function $y = f(x) = x^2$ is not 1-1

0

-4 -6 1 2

-5 -4 -3 -2 -1

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty,\infty)$

3

4 5

Inverse Functions - Example 3 • We saw that the function $y = f(x) = x^2$ is not 1-1

0 1 2

-4 -6

-5 -4 -3 -2 -1

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty,\infty)$

3

4 5

But if we restrict the domain to only values $x \ge 0$ then f is 1-1

Inverse Functions - Example 3 We saw that the function $y = f(x) = x^2$ is not 1-1

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty, \infty)$ But if we *restrict the domain* to only values $x \ge 0$ then *f* is 1-1 *Restricting the domain* means we only input the values x > 0

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty, \infty)$ But if we *restrict the domain* to only values $x \ge 0$ then f is 1-1 *Restricting the domain* means we only input the values $x \ge 0$ This creates a new function $\tilde{f} = f$ for values of $x \ge 0$

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty, \infty)$ But if we *restrict the domain* to only values $x \ge 0$ then f is 1-1 *Restricting the domain* means we only input the values $x \ge 0$ This creates a new function $\tilde{f} = f$ for values of $x \ge 0$ On the domain $x \ge 0$ we can find an inverse of \tilde{f}

This means, that $y = x^2$ does not have an inverse function. Or does it?

f is not 1-1 if we look at the **entire** domain; $(-\infty, \infty)$ But if we *restrict the domain* to only values $x \ge 0$ then f is 1-1 *Restricting the domain* means we only input the values $x \ge 0$ This creates a new function $\tilde{f} = f$ for values of $x \ge 0$ On the domain $x \ge 0$ we can find an inverse of \tilde{f} We have found it before! $\tilde{f}^{-1} = \sqrt{x}$

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

 $\tilde{f}^{-1}(x) = \sqrt{x}$

Let's make some observations about this.

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

$$\tilde{f}^{-1}(x) = \sqrt{x}$$

Let's make some observations about this.

• We can get the graph of $\tilde{f}^{-1}(x) = \sqrt{x}$ by reflecting the graph of \tilde{f} across the line y = x

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

 $\tilde{f}^{-1}(x) = \sqrt{x}$

Let's make some observations about this.

• We can get the graph of $\tilde{f}^{-1}(x) = \sqrt{x}$ by reflecting the graph of \tilde{f} across the line y = x

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

 $\tilde{f}^{-1}(x) = \sqrt{x}$

Let's make some observations about this.

• We can get the graph of $\tilde{f}^{-1}(x) = \sqrt{x}$ by reflecting the graph of \tilde{f} across the line y = x

The domain of $\tilde{f}(x)$ is the range of $\tilde{f}^{-1}(x) = \sqrt{x}$ which is: $[0,\infty)$

Restricting the Domain of $f(x) = x^2$ to $x \ge 0$ gives the 1-1 func: $\tilde{f}(x)$

 $\tilde{f}^{-1}(x) = \sqrt{x}$

Let's make some observations about this.

• We can get the graph of $\tilde{f}^{-1}(x) = \sqrt{x}$ by reflecting the graph of \tilde{f} across the line y = x

The domain of $\tilde{f}(x)$ is the range of $\tilde{f}^{-1}(x) = \sqrt{x}$ which is: $[0, \infty)$ The range of $\tilde{f}(x)$ is the domain of $\tilde{f}^{-1}(x) = \sqrt{x}$ which is: $[0, \infty)$