Inverse Functions - Example 2

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

-Like Example 1 The inverse changes the input x of f to the output of f^{-1}

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
x y-3 y-x y-1=x+1-1-x y
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x
To do this, we factor x out on the right, so it only shows up once:

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x
To do this, we factor x out on the right, so it only shows up once:

$$
-3 y-1=x(1-y)
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x
To do this, we factor x out on the right, so it only shows up once:

$$
-3 y-1=x(1-y)
$$

Finally, we can solve for x by dividing by $(1-y)$ to get:

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x
To do this, we factor x out on the right, so it only shows up once:

$$
-3 y-1=x(1-y)
$$

Finally, we can solve for x by dividing by $(1-y)$ to get:

$$
\frac{-3 y-1}{(1-y)}=x
$$

Inverse Functions - Example 2

Find the inverse function of:

$$
y=f(x)=\frac{x+1}{x-3}
$$

Like Example 1 The inverse changes the input x of f to the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, let's multiply both sides by $x-3$

$$
x y-3 y=(x-3) \cdot y=\frac{x+1}{x-3} \cdot(x-3)=x+1
$$

Since x is in our equation twice, let's get x to one side and everything without x to the other by Subtracting $x y$ and 1 from both sides:

$$
-3 y-1=x y-3 y-x y-1=x+1-1-x y=x-x y
$$

Now we need to solve the equation $-3 y-1=x-x y$ for x
To do this, we factor x out on the right, so it only shows up once:

$$
-3 y-1=x(1-y)
$$

Finally, we can solve for x by dividing by $(1-y)$ to get:

$$
\frac{-3 y-1}{(1-y)}=x
$$

Changing the roles of x and y gives the inverse: $y=f^{-1}(x)=\frac{-3 x-1}{1-x}$

