Inverse Functions - Example 1

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a oneto one function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a oneto-ne function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1}

Inverse Functions - Example 1

Wesaw that if $y=f(x)$ is a oneto-one function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1}
To get x as an output, we need to solve this equation for x

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1}
To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1}
To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3
$$

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:
$\begin{aligned} & y=f^{-1}(x)\end{aligned}$
as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$ Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1}
To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

Inverse Functions - Example 1

We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}
$$

Inverse Functions - Example 1

Wesaw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

Inverse Functions - Example 1

. We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

So, we get that the inverse function is: $x=\frac{y-3}{2}$

Inverse Functions - Example 1

. We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

So, we get that the inverse function is: $x=\frac{y-3}{2}$
Since it is customary to write the input as x, we re-write this as:

Inverse Functions - Example 1

. We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

So, we get that the inverse function is: $x=\frac{y-3}{2}$
Since it is customary to write the input as x, we re-write this as:

$$
y=\frac{x-3}{2}
$$

Inverse Functions - Example 1

. We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

So, we get that the inverse function is: $x=\frac{y-3}{2}$
Since it is customary to write the input as x, we re-write this as:

$$
y=\frac{x-3}{2}
$$

Alternatively: $f^{-1}(x)=\frac{x-3}{2}$

Inverse Functions - Example 1

. We saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Example: Compute the inverse of:

$$
y=f(x)=2 x+3
$$

The inverse function changes the input x of f into the output of f^{-1} To get x as an output, we need to solve this equation for x
To do this, we start by Subtracting 3 to get:

$$
y-3=2 x+3-3=2 x
$$

Next, we need to Divide by 2 on both sides:

$$
\frac{y-3}{2}=\frac{2 x}{2}=x
$$

So, we get that the inverse function is: $x=\frac{y-3}{2}$
Since it is customary to write the input as x, we re-write this as:

$$
y=\frac{x-3}{2}
$$

Alternatively: $f^{-1}(x)=\frac{x-3}{2}$
Notice: f^{-1} undoes the actions of f : Multiplying by 2 then Adding 3 by Subtracting 3 then Dividing by 2

