Inverse Functions - Domain and Range

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a oneto-one function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$

Inverse Functions - Domain and Range

- We just saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a oneto function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a oneto one function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a oneto one function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the input values of f^{-1} are the output values of f

Inverse Functions - Domain and Range

- We just saw that if $y=f(x)$ is a one-to-ne function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f

Inverse Functions - Domain and Range

- We just saw that if $y=f(x)$ is a one-to-ne function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f

Inverse Functions - Domain and Range

- We just saw that if $y=f(x)$ is a oneto-ne function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1}

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1} We are now ready to give our formal definition of an inverse:

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1} We are now ready to give our formal definition of an inverse:
If $y=f(x)$ is a 1-1 function, then $y=f^{-1}(x)$ is the inverse function if:

Inverse Functions - Domain and Range

We just saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1} We are now ready to give our formal definition of an inverse:
If $y=f(x)$ is a 1-1 function, then $y=f^{-1}(x)$ is the inverse function if:

- $x=f^{-1}(f(x))$

Inverse Functions - Domain and Range

- We just saw that if $y=f(x)$ is a onetoone function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1} We are now ready to give our formal definition of an inverse:
If $y=f(x)$ is a 1-1 function, then $y=f^{-1}(x)$ is the inverse function if:

- $x=f^{-1}(f(x))$
- Domain of $f^{-1}=$ Range of f

Inverse Functions - Domain and Range

C We just saw that if $y=f(x)$ is a one-to-one function then we can define its inverse function:

$$
y=f^{-1}(x)
$$

as a function so that $x=f^{-1}(f(x))$ and $x=f\left(f^{-1}(x)\right)$
Before we study how to compute inverses, let's try to get a better understanding of this function.
Since f^{-1} is a function, it must have a domain and range.
The domain of a function is the set of input values.
But the $\underbrace{\text { input values }}_{\text {domain }}$ of f^{-1} are the $\underbrace{\text { output values }}_{\text {range }}$ of f
So we found: Domain of $f^{-1}=$ Range of f
And since f is the inverse of f^{-1}, we have: Domain of $f=$ Range of f^{-1} We are now ready to give our formal definition of an inverse:
If $y=f(x)$ is a 1-1 function, then $y=f^{-1}(x)$ is the inverse function if:

- $x=f^{-1}(f(x))$
- Domain of $f^{-1}=$ Range of f
- Range of $f^{-1}=$ Domain of f

