Inverse Functions - Intro

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is. Such as: $y=x^{2}$

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value

We have done this many times, typically when finding the x-intercept
We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?
Recall: An a function has exactly one output for each input

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value?
i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?

- Recall: An a function has exactly one output for each input What happens if two input values x of $f(x)$ give the same output y ?

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?

- Recall: An a function has exactly one output for each input

What happens if two input values x of $f(x)$ give the same output y ?
For example: if $y=f(x)=x^{2}$ then $f(1)=1^{2}=1=(-1)^{2}=f(-1)$

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?

- Recall: An a function has exactly one output for each input

What happens if two input values x of $f(x)$ give the same output y ?
For example: if $y=f(x)=x^{2}$ then $f(1)=1^{2}=1=(-1)^{2}=f(-1)$
For an inverse to be a function, it can only send each y back to one x

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?

- Recall: An a function has exactly one output for each input

What happens if two input values x of $f(x)$ give the same output y ?
For example: if $y=f(x)=x^{2}$ then $f(1)=1^{2}=1=(-1)^{2}=f(-1)$
For an inverse to be a function, it can only send each y back to one x Does the inverse send the y-value $y=1$ back to $x=1$ or $x=-1$?

Inverse Functions - Intro

We often write functions as $y=f(x)$ because each x-value determines exactly one y-value.
Many times we use formulas to determine what the y-value is.
Such as: $y=x^{2}$
Given an x (such as $x=3$) we can find the y-value by computing:

$$
y=3^{2}=9
$$

But what if we know the y-value and want to compute the x-value? i.e. we want to know which x-value gives us a certain y-value We have done this many times, typically when finding the x-intercept We wanted to find the x-value(s) that gives $y=0$
This is the idea of an inverse
For a function $y=f(x)$ which takes an input value of x and gives an output value of y; an inverse of f takes an input value of y and gives an output value of x so that $y=f(x)$
So, an inverse has an input and output, but is it a function?
CRectil An a function has exactly one output for each input
What happens if two input values x of $f(x)$ give the same output y ?
For example: if $y=f(x)=x^{2}$ then $f(1)=1^{2}=1=(-1)^{2}=f(-1)$
For an inverse to be a function, it can only send each y back to one x Does the inverse send the y-value $y=1$ back to $x=1$ or $x=-1$? Since a function can't give both outputs; this inverse is not function!

Inverse Functions - Intro

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.

- We studied functions where each y-value is paired with one x-value

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.

- We studied functions where each y-value is paired with one x-value

Functions where each y-value is paired with one x-value are called 1-1

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.
-We studied functions where each y-value is paired with one x-value
Functions where each y-value is paired with one x-value are called 1-1
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.
CWe studied functions where each y-value is paired with one x-value
Functions where each y-value is paired with one x-value are called 1-1
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function We write the inverse function as: $x=f^{-1}(y)$

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.
CWe studied functions where each y-value is paired with one x-value
Functions where each y-value is paired with one x-value are called 1-1
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function We write the inverse function as: $x=f^{-1}(y)$
f^{-1} finds which input of f gives a particular output of f

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.
-We studied functions where each y-value is paired with one x-value
Functions where each y-value is paired with one x-value are called 1-1
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function We write the inverse function as: $x=f^{-1}(y)$
f^{-1} finds which input of f gives a particular output of f
Because it is customary to call the input of a function x we will often make x the input of f^{-1} and write it as:

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.
CWe studied functions where each y-value is paired with one x-value
Functions where each y-value is paired with one x-value are called 1-1
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function We write the inverse function as: $x=f^{-1}(y)$
f^{-1} finds which input of f gives a particular output of f
Because it is customary to call the input of a function x we will often make x the input of f^{-1} and write it as:

$$
y=f^{-1}(x)
$$

Inverse Functions - Intro

We just had trouble defining an inverse function for $y=f(x)=x^{2}$ The trouble came from having a y-value paired with two x-values And any time we have a y-value paired with two x-values we will have trouble finding an inverse!
But as long as each y-value is paired with one x-value, then we will not have this trouble finding an inverse.

- We studied functions where each y-value is paired with one x-value

Functions where each y-value is paired with one x-value are called $1-1$
Conclusion: If a function $y=f(x)$ is 1-1 then it has an inverse function We write the inverse function as: $x=f^{-1}(y)$
f^{-1} finds which input of f gives a particular output of f
Because it is customary to call the input of a function x we will often make x the input of f^{-1} and write it as:

$$
y=f^{-1}(x)
$$

Still: f^{-1} finds which input of f gives a particular output of f

