Composition of Functions - Example 2

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
\rightarrow Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))
$$

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
\rightarrow Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))
$$

To start, we can replace $f(x)=x+h$

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
\rightarrow Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))=g(x+h)
$$

To start, we can replace $f(x)=x+h$

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.

- Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))=g(x+h)
$$

To start, we can replace $f(x)=x+h$
The function g is the square root function, that takes the square root of its input

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
\rightarrow Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))=g(x+h)
$$

To start, we can replace $f(x)=x+h$
The function g is the square root function, that takes the square root of its input
The input of g here is $f(x)=x+h$

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))=g(x+h)=\sqrt{x+h}
$$

To start, we can replace $f(x)=x+h$
The function g is the square root function, that takes the square root of its input
The input of g here is $f(x)=x+h$
So, g takes the square root of its input $f(x)=x+h$

Composition of Functions - Example 2

Example: For the functions $f(x)=x+h$ and $g(x)=\sqrt{x}$ compute:

$$
g \circ f(x)
$$

Where h is some constant number.
Recall: The composition of functions means:

$$
g \circ f(x)=g(f(x))=g(x+h)=\sqrt{x+h}
$$

To start, we can replace $f(x)=x+h$
The function g is the square root function, that takes the square root of its input
The input of g here is $f(x)=x+h$
So, g takes the square root of its input $f(x)=x+h$
Conclusion:

$$
g \circ f(x)=\sqrt{x+h}
$$

