Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$. We computed:

$$
g \circ f(x)=x^{2}+2 x+1
$$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed :

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed :

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

\checkmark Recalli The composition of functions means:

$$
f \circ g(x)=f(g(x))
$$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed :

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall The composition of functions means:

$$
f \circ g(x)=f(g(x))
$$

To start, we can replace $g(x)=x^{2}$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed :

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)
$$

To start, we can replace $g(x)=x^{2}$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed :

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall: The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall: The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input The input of f here is $g(x)=x^{2}$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)=(x)^{2}+1
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input The input of f here is $g(x)=x^{2}$
So, f Adds 1 to its input $g(x)=x^{2}$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)=(x)^{2}+1
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input
The input of f here is $g(x)=x^{2}$
So, f Adds 1 to its input $g(x)=x^{2}$
Conclusion:

$$
f \circ g(x)=(x)^{2}+1
$$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall: The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)=(x)^{2}+1
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input
The input of f here is $g(x)=x^{2}$
So, f Adds 1 to its input $g(x)=x^{2}$
Conclusion:

$$
f \circ g(x)=(x)^{2}+1
$$

Notice:

$$
f \circ g(x) \neq g \circ f(x)
$$

Composition of Functions - Example 1 Revisited

For the functions $f(x)=x+1$ and $g(x)=x^{2}$ We computed

$$
g \circ f(x)=x^{2}+2 x+1
$$

Example: For the functions $f(x)=x+1$ and $g(x)=x^{2}$ compute:

$$
f \circ g(x)
$$

Recall: The composition of functions means:

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)=(x)^{2}+1
$$

To start, we can replace $g(x)=x^{2}$
The function f is a function that adds 1 to its input
The input of f here is $g(x)=x^{2}$
So, f Adds 1 to its input $g(x)=x^{2}$
Conclusion:

$$
f \circ g(x)=(x)^{2}+1
$$

Notice:

$$
f \circ g(x) \neq g \circ f(x)
$$

In other words, the order in which we compute the composition matters!

