For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x))$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x))$

To start, we can replace $g(x) = x^2$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2)$

To start, we can replace $g(x) = x^2$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2)$

To start, we can replace $g(x) = x^2$ The function for a function that adds 1 to

The function f is a function that adds 1 to its input

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2)$

To start, we can replace $g(x) = x^2$ The function f is a function that adds 1 to its input The input of f here is $g(x) = x^2$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2) = (x)^2 + 1$

To start, we can replace $g(x) = x^2$ The function f is a function that adds 1 to its input The input of f here is $g(x) = x^2$ So, f Adds 1 to its input $g(x) = x^2$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2) = (x)^2 + 1$

To start, we can replace $g(x) = x^2$ The function f is a function that adds 1 to its input The input of f here is $g(x) = x^2$ So, f Adds 1 to its input $g(x) = x^2$ **Conclusion:**

 $f \circ g(x) = (x)^2 + 1$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

 $f \circ g(x) = f(g(x)) = f(x^2) = (x)^2 + 1$

To start, we can replace $g(x) = x^2$ The function f is a function that adds 1 to its input The input of f here is $g(x) = x^2$ So, f Adds 1 to its input $g(x) = x^2$ **Conclusion:**

 $f \circ g(x) = (x)^2 + 1$

Notice:

$$\boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{x}) \neq \boldsymbol{g} \circ \boldsymbol{f}(\boldsymbol{x})$$

For the functions f(x) = x + 1 and $g(x) = x^2$ We computed: $g \circ f(x) = x^2 + 2x + 1$

Example: For the functions f(x) = x + 1 and $g(x) = x^2$ compute: $f \circ g(x)$

• Recall: The composition of functions means:

$$f \circ g(x) = f(g(x)) = f(x^2) = (x)^2 + 1$$

To start, we can replace $g(x) = x^2$ The function f is a function that adds 1 to its input The input of f here is $g(x) = x^2$ So, f Adds 1 to its input $g(x) = x^2$

Conclusion:

 $f \circ g(x) = (x)^2 + 1$

Notice:

$$\boldsymbol{f} \circ \boldsymbol{g}(\boldsymbol{x}) \neq \boldsymbol{g} \circ \boldsymbol{f}(\boldsymbol{x})$$

In other words, the order in which we compute the composition matters!