Combining Functions - Composition

Combining Functions - Composition

\rightarrow We saw the we can Add, Subtract, Multiply and Divide functions.

Combining Functions - Composition

- We saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

Combining Functions - Composition

- We saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company
is a function of the quantity q of goods they sell

Combining Functions - Composition

- We saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company
is a function of the quantity q of goods they sell
We wrote this as $R(q)$

Combining Functions - Composition

- we saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- Wessaw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.

Combining Functions - Composition

\rightarrow We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.

Combining Functions - Composition

\rightarrow We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R

Combining Functions - Composition

\rightarrow We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$

Combining Functions - Composition

- we saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q

Combining Functions - Composition

- We saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R

Combining Functions - Composition

- we saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$

Combining Functions - Composition

We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$
It is a chain reaction of one variable effecting a second, effecting a third

Combining Functions - Composition

We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$
It is a chain reaction of one variable effecting a second, effecting a third This is called the composition of functions

Combining Functions - Composition

We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$
It is a chain reaction of one variable effecting a second, effecting a third
This is called the composition of functions
We write it as: $N \circ R(q)$

Combining Functions - Composition

- We saw the we can Add, Subtract, Multiply and Divide functions.

There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$
It is a chain reaction of one variable effecting a second, effecting a third
This is called the composition of functions
We write it as: $N \circ R(q)$
In General: For two functions $f(x)$ and $g(x)$

Combining Functions - Composition

We saw the we can Add, Subtract, Multiply and Divide functions.
There is another way that we can combine two functions!

- We saw that the Revenue (amount of money brought in) of a company is a function of the quantity q of goods they sell
We wrote this as $R(q)$
But the Revenue, in turn, can effect the number of employees a company has.
Let's call $N=$ number of employees.
Since R effects N we can say that N is a function of R
So, we can write: $N(R)$
But, remember $R=R(q)$ is a function of q
Which means that N is a function of q, passing through R
Which we write as: $N(R(q))$
It is a chain reaction of one variable effecting a second, effecting a third
This is called the composition of functions
We write it as: $N \circ R(q)$
In General: For two functions $f(x)$ and $g(x)$

$$
g \circ f(x)=g(f(x))
$$

